Synthesized Function Generator

SFG-1000 Series

USER MANUAL

GW INSTEK PART NO. 82FG-10030MA1

ISO-9001 CERTIFIED MANUFACTURER

This manual contains proprietary information, which is protected by copyrights. All rights are reserved. No part of this manual may be photocopied, reproduced or translated to another language without prior written consent of Good Will company.

The information in this manual was correct at the time of printing. However, Good Will continues to improve products and reserves the rights to change specification, equipment, and maintenance procedures at any time without notice.

Good Will Instrument Co., Ltd.

No. 7-1, Jhongsing Rd., Tucheng City, Taipei County 236, Taiwan.

Table of Contents

SAFETY INSTRUCTIONS5			
	Safety Symbols5 Safety Guidelines5		
GETTING STAR	8. TED		
	Technical background9Lineup/Features11Front Panel12Rear Panel15Set Up16Operation Shortcuts18		
SINE/SQUARE	/TRIANGLE WAVE19		
	Activate waveform20Set Frequency20Set Amplitude22Set Duty Cycle (Square Waveform)23Set Offset23		
TTL OUTPUT	25		
	Activate TTL		
APPLICATION	EXAMPLES28		
	Reference Signal for PLL System28Trouble-Shooting Signal Source28Transistor DC Bias Characteristics Test29Amplifier Over-Load Characteristic Test30Amplifier Transient Characteristics Test30		

	Logic Circuit Test	32
	Impedance Matching Network Test	32
	Speaker Driver Test	33
FAQ		
APPENDIX		35
	Fuse Replacement	35
	•	
	Fuse Replacement Specification Declaration of Conformity	37

SAFETY INSTRUCTIONS

This chapter contains important safety instructions that you must follow when operating SFG-1000 series and when keeping it in storage. Read the following before any operation to insure your safety and to keep the best condition for SFG-1000 series.

Safety Symbols

These safety symbols may appear in this manual or on SFG-1000 series.

$ar{\!$	Warning: Identifies conditions or practices that could result in injury or loss of life.	
	Caution: Identifies conditions or practices that could result in damage to SFG-1000 series or to other properties.	
\triangle	Attention Refer to the Manual	
<u> </u>	Earth (ground) Terminal	

Safety Guidelines

General Guideline	 Do not place any heavy object on SFG-1000 series. 			
0	• Avoid severe impacts or handling that leads to damage.			
	 Do not discharge static electricity to SFG-1000 series. 			
∠ · · · CAUTION	 Use only mating connectors, for the terminals. 			
	 Do not block or obstruct cooling vent opening. 			
	 Do not perform measurements at power source and 			
	building installation site (Note below).			
	 Do not disassemble SFG-1000 series unless you are 			

• Do not disassemble SFG-1000 series unless you are qualified as service personnel.

	 (Note) EN 61010-1:2001 specifies the measurement categories and their requirements as follows. SFG-1000 series falls under category II. Measurement category IV is for measurement performed at the source of low-voltage installation. Measurement category III is for measurement performed in the building installation. Measurement category II is for measurement performed on the circuits directly connected to the low voltage installation.
Power Supply	 Input voltage: 100/120/220/240V AC ±10%, 50/60Hz (fixed voltage rating, factory installed) The power supply voltage should not fluctuate more than 10%. Connect the protective grounding conductor of the power cord to earth ground, to avoid electrical shock.
Fuse	 Fuse type: T0.16A/250V (for 220V/240V±10% rating), T0.315A/250V (for 100V/120V±10% rating) Replace the fuse with the specified type and rating only, for continued fire protection. For fuse replacement details, see page35. Disconnect the power cord before fuse replacement. Make sure the cause of the fuse blowout is fixed before fuse replacement.
Cleaning SFG-1000 series	 Disconnect the power cord before cleaning. Use a soft cloth dampened in a solution of mild detergent and water. Do not spray any liquid into SFG-1000 series. Do not use chemicals or cleaners containing harsh materials such as benzene, toluene, xylene, and acetone.
Operation Environment	 Location: Indoor, no direct sunlight, dust free, almost non-conductive pollution (Note below) Relative Humidity: < 80% Altitude: < 2000m Temperature: 0°C to 40°C (Note) EN 61010-1:2001 specifies the pollution degrees and their requirements as follows. SFG-1000 series falls under degree 2. Pollution refers to "addition of foreign matter, solid, liquid, or gaseous (ionized gases), that may produce a reduction of dielectric strength or surface resistivity".

	 Pollution degree 1: No pollution or only dry, non-conductive pollution occurs. The pollution has no influence. Pollution degree 2: Normally only non-conductive pollution occurs. Occasionally, however, a temporary conductivity caused by condensation must be expected. Pollution degree 3: Conductive pollution occurs, or dry, non-conductive pollution occurs which becomes conductive due to condensation which is expected. In such conditions, equipment is normally protected against exposure to direct sunlight, precipitation, and full wind pressure, but neither temperature nor humidity is controlled.
Storage	Location: Indoor
Environment	• Relative Humidity: < 70%
	• Temperature: -10°C to 70°C

Power cord for the United Kingdom

When using SFG-1000 series in the United Kingdom, make sure the power cord meets the following safety instructions.

NOTE: This lead / appliance must only be wired by competent persons

WARNING: THIS APPLIANCE MUST BE EARTHED

IMPORTANT: The wires in this lead are coloured in accordance with the following code:

Green/ Yellow:	Earth
Blue:	Neutral
Brown:	Live (Phase)

As the colours of the wires in main leads may not correspond with the colours marking identified in your plug/appliance, proceed as follows:

The wire which is coloured Green & Yellow must be connected to the Earth terminal marked with the letter E or by the earth symbol 🔄 or coloured Green or Green & Yellow. The wire which is coloured Blue must be connected to the terminal which is marked with the letter N or coloured Blue or Black.

The wire which is coloured Brown must be connected to the terminal marked with the letter L or P or coloured Brown or Red.

If in doubt, consult the instructions provided with the equipment or contact the supplier. This cable/appliance should be protected by a suitably rated and approved HBC mains fuse: refer to the rating information on the equipment and/or user instructions for details. As a guide, cable of 0.75mm2 should be protected by a 3A or 5A fuse. Larger conductors would normally require 13A types, depending on the connection method used.

Any moulded mains connector that requires removal /replacement must be destroyed by removal of any fuse & fuse carrier and disposed of immediately, as a plug with bared wires is hazardous if a engaged in live socket. Any re-wiring must be carried out in accordance with the information detailed on this label.

GETTING STARTED

This chapter describes SFG-1000 series in a nutshell, including main features and front/rear/display introduction. Follow the Set Up section to properly install and power up SFG-1000 series.

SFG-1000	Technical background9		
series overview	Series lineup11		
	Main features		
Panel	Main Display12		
introduction	Entry keys13		
	Others14		
	Rear Panel 15		
Setup	Tilt stand16		
	Power up		
	Functionality check		
Quick reference	Operation Shortcuts18		

Technical background

Traditional function generators	SFG-1000 series uses the latest Direct Digital Synthesis (DDS) technology to generate stable, high resolution output frequency. The DDS technology solves several problems encountered in traditional function generators, as follows.		
	Constant current circuit methodology This analog function generating method uses a constant current source circuit built with discrete components such as capacitors and resistors. Temperature change inside the generator greatly affects the components characteristics which lead to output frequency change. The results are poor accuracy and stability.		
DDS methodology	In DDS, the waveform data is contained in and generated from a memory. A clock controls the counter which points to the data address. The memory output is converted into analog signal by a digital to analog converter (DAC) followed by a low pass filter. The resolution is expressed as fs/2k where fs is the frequency and k is the control word, which contains more than 28bits. Because the frequency generation is referred to clock signal, this achieves much higher frequency stability and resolution than the traditional function generators.		

Block diagram **DDS synthesizer consists of Phase accumulator** (counter), lookout table data (ROM), Digital-to-analog converter (DAC), and Low-pass filter (LPF).

The phase accumulator adds the frequency control word K at every clock cycle fs. The accumulator output points to a location in the Table ROM/RAM. The DAC converts the digital data into an analog waveform. The LPF filters out the clock frequency to provide a pure waveform.

Lineup/Features

Series lineup

Features Lineup	Frequency	Offset	TTL output	-40dB attn.	Voltage display
SFG-1003 SFG-1013	3MHz 3MHz	•	•	•	•

Main features

Performance	 High resolution using DDS technology High frequency accuracy: ±20ppm Low distortion: -55dBc @ ≤200kHz
Features	 High resolution 100mHz Digital user interface with 6-digit LED display
	 Various output waveforms: Sine, Square, and Triangle TTL output
	 Amplitude control -40dB attenuation Duty control
	 Variable DC offset control Output On/Off control
	Voltage display (SFG-1013)Output overload protection
Interface	Frequency outputTTL output

Front Panel

TTL indicator

Waveform indicator

Frequency indicator

Voltage indicator (SFG-1013 only)

-40dB indicator (SFG-1013 only)

TTL Indicates that the TTL output is enabled. For details, see page25. Indicates the waveform shape: Sine, Square, and Triangle. M k Hz Indicates the output frequency: MHz, kHz, or Hz. m V Indicates Voltage unit: mV, or V. For voltage measurement detail, see page22. -40dB Indicates –40dB attenuation is

G≝INSTEK

Entry keys

Waveform key	WAVE	Selects the waveform: sine, square, and triangle. For details, see page20.
TTL activation		Activates TTL output. For details, see page25.
Numerical keys		Specifies frequency.
Frequency unit selection		Specifies the frequency unit: MHz, kHz, or Hz.
	(9,0)	
Cursor selection	$\begin{array}{c} \text{SHIFT} \rightarrow \\ \hline \\ 4 \text{ or } 5 \end{array}$	Moves the cursor (frequency editing point) left or right. For details, see page21.
-40dB attenuation (SFG-1013 only)	-40dB SHIFT → 3	Attenuates amplitude by -40dB. For details, see page22. Key operation is for SFG-1013 only.
Frequency / Voltage display selection (SFG-1013 only)	V/F •	Switches the display between frequency and voltage. For details, see page22. For SFG-1013 only.
Shift key	SHIFT	Selects the 2 nd function associated to the entry keys. The LED lights when Shift is activated.
Output On/Off key	OUTPUT ON	Turns the output On/Off. The LED lights when the output is On.

Others

ADJ

GWINSTEK

Duty cycle control	DUTY ADJ	When pulled out, sets the square or TTL wave duty cycle. Turn left (decrease) or right (increase). The range is $25\% \sim 75\%$. For details, see page23 (square wave) or page27 (TTL).
Power switch	POWER	Turns the main power On/Off. For power up sequence, see page17.

Rear Panel

AC Rating Information	SFG-1000 series has fixed AC line voltage: 100, 120, 220, or 240V (factory installed setting). The label shows the applicable rating.
AC Power Input	Accepts the AC power cord. 100,120,220, or 240V, ±10%, 50/60Hz.
Ground Terminal	The safety ground terminal. Use this terminal for common ground connection.

Set Up

G≝INSTEK

k

Hz

- Power up1.Check the voltage
level displayed on the
label(1) and make
sure it is identical to
the AC line. Then
connect the power
cord(2).
 - 2. Push and turn On the main power switch on the front panel.

3. The display shows the default setup: Sine wave, 1kHz

1. Connect SFG main output to measurement device such as oscilloscope.

2. Press the output key. The output is activated and the LED turns On.

3. Observe the output waveform: 1kHz, sine wave.

Operation Shortcuts

Sine wave 250Hz, –40dB	1.	Press Wave key and select Sine	WAVE 🔨
amplitude OUTPUT	2.	Press 2 + 5 + 0 + Shift + 0(Hz) key	2 5 0 SHIFT 0
	3.	(SFG-1003) Press Output key, then pull Amplitude knob	
• <u>-</u> _	4.	(SFG-1013) Press Output key, then press Shift + 3 (-40dB) key	OUTPUT ON SHIFT 3
Triangle wave 8kHz,+2V Offset	1.	Press Wave key and select Triangle	WAVE 🔨
OUTPUT 50 Ω	2.	Press 8 + Shift + 9(kHz) key	8 SHIFT 9
	3.	Press Output key, then pull Offset knob and Rotate	
Square Wave 1MHz, 45% duty	1.	Press Wave key and select Square	WAVE
OUTPUT 50Ω	2.	Press 1 + Shift + 8(MHz) key	MHz 1 SHIFT 8
	3.	Press Output key, then pull Duty knob and rotate	
TTL Output 10kHz	1.	Press Output key	
OUTPUT	2.	Press Shift + Wave (TTL) key	TTL SHIFT WAVE
	3.	Press 1 + 0 + Shift + 9(kHz) key	1 O SHIFT 9

SINE/SQUARE/TRIANGLE WAVE

Select waveform	Activate waveform20
Set frequency	Enter frequency20
	Edit frequency 21
	Maximum frequency limit error
	Minimum frequency limit error22
Set amplitude	Set Amplitude 22
	View amplitude (SFG-1013)22
	Attenuate by -40dB 22
Set duty cycle (square wave)	Enter duty cycle23
Set offset	Activate offset 23
	Adjust offset23
	Limitation24

Activate waveform

Sine / Square / Triangle	WAVE	1.		ve key repeatedly. The ng indicator appears on
			\sim	Sine waveform
			പ	Square waveform
			\sim	Triangle waveform
		2.	Press the out turns On.	tput key. The LED
		3.	The wavefor main termina 10Vp-p (500 20Vp-p (no 1	2 load)

Set Frequency

GÜINSTEK

When the input exceeds it, an error message (Err-2) appears

and forces the frequency to 1MHz.

Minimum frequency limit error For full error message list, see page37.

Err-	The minimum frequency is 0.1Hz. When the frequency input becomes less than 0.1Hz, an error message (Err-4) appears and forces the frequency to 0.1Hz
	frequency to 0.1Hz.

Set Amplitude

Amplitude setting does not apply to TTL output (page25).

GWINSTEK

Set Duty Cycle (Square Waveform)

The duty cycle setting is not available in sine/triangle waveform.

Enter duty cycle	DUTY ADJ	Pull out the Duty knob. Turn right (left) to increase (decrease) the duty cycle. The default is set at 50%.
Range	25% ~ 75%	

Set Offset

Offset setting does not apply to TTL output (page25).

Activate offset	SFG can add or delete offset to the sine/square/triangle waveform, thus changing the waveform vertical position.		
		Pull the OFFSET knob to turn On Offset setting.	
Adjust offset	OFFSET	Turn the knob right (higher position) or left (lower position).	
	Range	$-5V \sim +5V$ for 50 Ω output load	

TL OUTPUT

Activate TTL	Activate TTL 25
Set frequency	Enter frequency26
	Edit frequency26
	Maximum frequency limit error27
	Minimum frequency limit error27
Set duty cycle	Enter duty cycle27

Activate TTL

Set Frequency

Maximum
frequency
limit errorFor full error message list, see page37.TTL
imit errorTTL
imit errorTTL
imit errorTTL
imit errorTTL
imit errorTTL
imput exceeds it, an error
message (Err-1) appears and
forces the frequency to 3MHz.

For full error message list, see page37.

Minimum frequency limit error

0.1Hz. When the frequency is input becomes less than 0.1Hz, an error message (Err-4) appears and forces the frequency to 0.1 Hz.

Set Duty Cycle

Enter duty cycle	DUTY ADJ	1.	Pull out the Duty knob. Turn right (left) to increase (decrease) the duty cycle. The default is set at 50%.
		2.	Press the Duty knob. The duty cycle is reset to 50%.
Range	25% ~ 75%		

Reference Signal for PLL System

Description	The SFG output can be used as a cost-effective reference signal for Phase-Locked-Loop system. Directly connect SFG output to PLL input.		
Block diagram	SFG series		
U U			
	Reference In		

Trouble-Shooting Signal Source

Description The SFG output can be used as the signal source to test the failed part in a circuit system. Isolate the problematic part from the rest, feed the SFG output as a stimulus, and observe the outcome using an oscilloscope.

Transistor DC Bias Characteristics Test

Description Use SFG-1000 series as the signal source for a transistor. Compare the transistor input/output waveform using the oscilloscope. Adjust the DC voltage source to find out the maximum output without distorting the waveform.

Amplifier Over-Load Characteristic Test

Description Use the triangle wave output from SFG-1000 series to check the amplifier output distortion caused by overload. The common sine wave is not the ideal source in this case. Observe the linearity of the triangle waveform using an oscilloscope.

Amplifier Transient Characteristics Test

Description	Use the square wave output from SFG-1000 series to check the transient frequency response of an amplifier. The common sine wave is not the ideal source in this case. Observe the waveform using an oscilloscope.		
	SFG series	Oscilloscope	
Block diagram			
	Square wave	Amplifier	

Test step	 2. 3. 	Apply a triangle waveform to the amplifier first. Adjust the waveform amplitude to make sure there is no clipping. Switch to square waveform and adjust its frequency to the middle of the amplifier pass band, such as 20Hz, 1kHz, and 10kHz. Observe the shape of the amplifier output. The following table shows the possible output distortions and their explanations.
Transient characteristiclist		 Amplitude reduction at low frequency No phase shift
		Low frequency boosted (accentuated fundamental)
	$\left[\right]$	High frequency lossNo phase shift
		 Low frequency phase shift Trace thickened by hum-voltage
	ſ	High frequency loss Phase shift
		Low frequency loss Phase shift
	K	 Low frequency loss Low frequency phase shift
	Λ	 High frequency loss Low frequency phase shift
	~ ~	Damped oscillation

For narrow band amplifier testing, square wave may not be suitable.

Logic Circuit Test

Description Use the TTL output from SFG-1000 series to test digital circuits. Observe the timing relation of input/output waveform using an oscilloscope.

Impedance Matching Network Test

Test stepAdjust the potentiometer until V2 becomes the half of
V1 (V2=0.5V1). Then the impedance Z of the network
becomes identical to the potentiometer.

Speaker Driver Test

Description Use SFG-1000 series for testing the frequency characteristics of audio speakers. Record the volt reading versus the input signal frequency.

Graph The peak voltage occurs on the resonant frequency of the speaker.

AQ

- I pressed the Power switch on the front panel but nothing happens.
- How can I get out of TTL/-40dB mode?
- The device accuracy does not match the specification.
- What are these error messages?

I pressed the Power switch on the front panel but nothing happens.

Make sure the AC source voltage is set at the rating $\pm 10\%$, 50/60Hz. For power up sequence, see page17. Otherwise the internal fuse might be blown out. For fuse replacement procedure, see page35.

TTL does not activate (pressed Shift + Wave key)

You need to turn On the output first. Press the Output key, then press Shift+Wave. For details, see page25.

How can I get out of TTL/-40dB mode?

For TTL: press the Shift key, then the wave key. For details, see page25. For -40dB mode, press the Shift key, then 3. For details, see page22.

The device accuracy does not match the specification.

Make sure the device is powered On for at least 30 minutes, within $+18^{\circ}C \sim +28^{\circ}C$. This is necessary to stabilize the unit to match the specification.

What are these error messages?

Several messages appear when trying to set the frequency in irregular ways. Page37 summarizes the messages.

If there is still a problem, please contact your local dealer or GWInstek at www.gwinstek.com.tw / marketing@goodwill.com.tw.

Appendix

Fuse Replacement

- 1. Take off the Handle
- In order to detach the handle from the unit, turn the handle down 90 degrees, then pull it off sideways.

2. Take off the Cover Take off the two metal holdings from the handle joint. Then take the top screw off from the rear panel.

Slide the upper case to the rear side and take off the top cover.

3. Replace the Fuse

Replace the blown fuse located on the rear printed circuit board.

Error Messages

Frequency error	Er	ı ¦
	Err-1	Sine, square, and TTL wave frequency over range. This message appears when entering sine / square / TTL waveform frequency larger than 3MHz. The frequency is automatically forced to 3MHz.
	Err-2	Triangle wave Frequency over range. This message appears when entering triangle waveform frequency larger than 1MHz. The frequency is automatically forced to 1MHz.
	Err-4	Frequency over resolution. This message appears when trying to enter frequency less than 0.1Hz. The frequency is automatically forced to 0.1 Hz.

Specification

- SFG series must be powered for at least 30 minutes within the ambient temperature $18^{\circ}C \sim 28^{\circ}C$ to meet this spec.

Output Function	Sine, Square, Triangle
Amplitude Range	10Vpp (50Ω load)
Amplitude Accuracy	±20% at maximum position (SFG-1013 only)
Impedance	$50\Omega \pm 10\%$
Attenuator	-40 dB \pm 1dB x1
DC Offset	< -5V ~ >+5V (50Ω load)
Duty Range	25% ~ 75%, ≤1MHz (Square Wave)
Display	6 digits LED display
Sine/Square Waveform Range	0.1Hz ~ 3MHz
Triangle Waveform Range	0.1Hz ~ 1MHz
Resolution	0.1Hz maximum
Stability	±20ppm
Accuracy	±20ppm
Aging	±5ppm/year
	Amplitude Range Amplitude Accuracy Impedance Attenuator DC Offset Duty Range Display Sine/Square Waveform Range Triangle Waveform Range Resolution Stability Accuracy

Sine Wave	Harmonic Distortion	\geq -55dBc, 0.1Hz ~ 200kHz \geq -40dBc, 0.2MHz ~ 2MHz \geq -35dBc, 2MHz ~ 3MHz (At maximum position without any attenuation to 1/10 of any combination setting, TTL Off)
	Flatness	< \pm 0.3dB, 0.1Hz ~ 1MHz < \pm 0.5dB, 1MHz ~ 2MHz < \pm 1dB, 2MHz ~ 3MHz (At the max amplitude relating to 1kHz)
Triangle Wave	Linearity	≥ 98%, 0.1Hz ~ 100kHz ≥ 95%, 100kHz ~ 1MHz
Square Wave	Symmetry Rise/Fall Time	\pm 5% of period + 4ns, 0.1Hz ~ 100kHz \leq 100ns at maximum output, 50Ω load
TTL Output	Level Fan Out Rise/Fall Time	≥ 3Vpp 20 TTL Load ≤ 25ns
General	Power Source	AC 100/120/220/240V \pm 10%, 50/60Hz (Line voltage setting is factory installed)
	Operation Environment	Indoor Use, Altitude Up to 2000m Ambient Temperature 0 ~ 40°C Relative Humidity ≤ 80%, 0 ~ 40°C Install Category II / Pollution Degree 2
	Storage Environment	Temperature −10 ~ 70°C Humidity ≤70%
	Accessories	Instruction Manual x 1 GTL-101 x 1
	Dimension Weight	251 (W) x 91 (H) x 291 (D) Approx. 2.1kg

Declaration of Conformity

We

GOOD WILL INSTRUMENT CO., LTD.

(1) No.7-1, Jhongsing Rd., Tucheng City, Taipei County, Taiwan(2) No. 69, Lu San Road, Suzhou City (Xin Qu), Jiangsu Sheng, China declare, that the below mentioned product

Type of Product: Synthesized Function Generator Model Number: SFG-1003, SFG-1013

are herewith confirmed to comply with the requirements set out in the Council Directive on the Approximation of the Law of Member States relating to Electromagnetic Compatibility (89/336/EEC, 92/31/EEC, 93/68/EEC) and Low Voltage Directive (73/23/EEC, 93/68/EEC). For the evaluation regarding the Electromagnetic Compatibility and Low Voltage Directive, the following standards were applied:

◎ EMC

ENI 01990 1. Els states la surta sente	······································	
EN 61326-1: Electrical equipment for measurement, control and laboratory		
use — EMC requirements (1997 + A1:1998 + A2:2001 + A3:2003)		
Conducted Emission	Electrostatic Discharge	
Radiated Emission	EN 61000-4-2: 1995 + A1:1998 +	
EN 55011: Class A 1998 +	A2:2001	
A1:1999 + A2:2002		
Current Harmonics	Radiated Immunity	
EN 61000-3-2: 2000 + A2:2005	EN 61000-4-3: 2002 + A1:2002	
Voltage Fluctuations	Electrical Fast Transients	
EN 61000-3-3: 1995 + A1:2001 +	EN 61000-4-4: 2004	
A2:2005		
	Surge Immunity	
	EN 61000-4-5: 1995 + A1:2001	
	Conducted Susceptibility	
	EN 61000-4-6: 1996 + Å1:2001	
	Power Frequency Magnetic Field	
	EN 61000-4-8: 1993 + A1:2001	
	Voltage Dip/ Interruption	
	EN 61000-4-11: 2004	

◎ Safety

Low Voltage Equipment Directive 73/23/EEC & amended by 93/68/EEC Safety Requirements IEC/EN 61010-1: 2001

INDEX

4

40dB attenuation	
faq	
step	
A	

amplifier application example...... 30

С

caution symbol	5
cleaning	6
constant current circuit	9
control knob overview1	4

D

default display17
digital direct synthesis
block diagram 10
direct digital synthesis9
display contents overview 12
duty cycle
faq 34
sine/square/triangle23
TTL

E

EN55011
EN61010
declaration of conformity
measurement category6
pollution degree 6
error message
error121
error221
error4 22

summary......37

F

FAQ
feature list11
frequency editing
sine/square/triangle20
TTL26
frequency faq34
front panel key overview13
fuse
rating36
replacement35
safety instruction6

G

ground	terminal
--------	----------

location	15
symbol	5

I

impedance application example	32
in/out terminal overview	14

L

```
logic application example......32
```

М

model	lineup	11	1

0

offset23
example setting18
operation environment
safety instruction6
specification38

G凹INSTEK

operation shortcut18
Р
peak clip24
PLL example application28
power supply
safety instruction6
power up sequence17
faq34
R
rear panel overview15
S
setup step16

sine wave	
example setting	18
selection	20
speaker application example	
specification	37
FAQ	34
square wave	
example setting	18
selection	20

storage environment
safety instruction7
specification38
Т
table of contents3
tilt stand16
transistor application example29
triangle wave
example setting18
selection 20
troubleshooting example28
TTL
activation25
example setting18
U
UK power cord7
V
voltage viewing22
W
warning symbol5