

Python Tutorial and Application
HandBook
MPO-2000 Series

ISO-9001 CERTIFIED MANUFACTURER

This manual contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this manual may be
photocopied, reproduced or translated to another language without
prior written consent of Good Will company.

The information in this manual was correct at the time of printing.
However, Good Will continues to improve products and reserves the
rights to change specification, equipment, and maintenance
procedures at any time without notice.

Good Will Instrument Co., Ltd.
No. 7-1, Jhongsing Rd., Tucheng Dist., New Taipei City 236, Taiwan

 Preface

1

Preface

This manual is a Python basic tutorial document that we have

written for beginners, with the aim of helping users quickly learn

and master the basics of Python programming. Through the

examples provided in this manual, you can learn how to control

various built-in hardware devices and external equipment in the

MPO-2000 series, thereby applying Python to practical automation

control and automated testing projects.

We would like to express special thanks to Guido van Rossum, the

original designer of the Python language, who first released Python

0.9.0 in 1991. We would also like to thank Damien P. George, who

was inspired by the Python language and implemented

MicroPython, which can run on embedded systems. MicroPython

made its first appearance in a Kickstarter crowdfunding campaign in

2013. And thanks to the contributions of the Python and

MicroPython communities, based on their achievements and the

efforts of our engineers, we are able to provide users with the ability

to directly execute MicroPython application scripts on MPO-2000.

MicroPython is a subset of the Python 3 scripting language designed

for microcontrollers and embedded systems. Like Python, it does

not require programs to be compiled in advance on a PC and can be

executed directly by an interpreter. Compared to C or other

languages, using MicroPython allows users to develop software

more efficiently and with higher readability and maintainability.

Although MicroPython is limited by system resources and only

 MPO-2000 Python Tutorial & Application Handbook

2

implements some data types and module functions of Python 3, we

believe it is fully capable of being applied to small-scale automated

test systems, and we will refer to it as Python in the following

description.

To enable Python application scripts in the MPO-2000 series to have

a richer graphical user interface, we have ported the LVGL (Light

and Versatile Graphics Library) library into the system, allowing

Python script developers to provide more aesthetic and user-

friendly user interfaces when designing automated measurement

functions. Due to the limited documentation available for LVGL

library use on the internet, you may encounter more issues during

development. We recommend that this be done by professional

engineers.

We hope that this manual will lead users to understand the basics of

Python script design in the shortest time possible, so that users can

control local hardware and external devices through the examples

we provide, understand the applications and advantages of Python,

and apply what they have learned to practical testing projects.

We recommend that users further their learning by reading more

books and examples about Python. Python is a very popular

scripting language with abundant resources and communities, and

you can further enhance your programming skills by learning

Python extensively.

Sincerely,

The Oscilloscope Development Team

* Python is a trademark of the Python Software Foundation (PSF).

 Preface

3

Table of Contents

Preface .. 1

System Operation and Architecture................................... 6

Differences Between Basic and Professional Versions 10

Python Script Memory Usage 11
External USB Device Support 12
Python Graphics Library Support 13
Packaging Python Scripts into a Python App 14

Python Basic .. 15

Coding Style Guides ... 17
Comments ... 19
Variables .. 21
Data Types ... 22
Array .. 30
Operators .. 32
Control Flow Statements .. 35
Functions ... 39
Class .. 43
Print .. 47
Module .. 50
Import ... 51
File .. 53
Try… Except .. 55
Garbage Collection .. 59
Common Errors ... 62

Oscilloscope Library ... 66

Basic Oscilloscope Operations with Python 67
Controlling the Built-In Spectrum Analyzer 68

 MPO-2000 Python Tutorial & Application Handbook

4

Controlling the Built-In AWG.................................... 70
Controlling the Built-In DMM 71
Controlling the Built-In DC Power Units................... 72
Control Method of GO-NOGO Output Pin 73

Control of Connected External Devices 74

Simple Method for Connecting External USB Devices75
Further Learning with the Serial Module 77

Graphical User Interface in Python 87

Introduction to LVGL ... 88
LVGL Basic Examples ... 90
DSO Drawing Module ...114

Python Script Editing, Debugging, and Execution 121

Editing Using a Web Editor via Ethernet Connection122
Editing Using the Simple Editor on the Machine139

Built-in Python APP and its Measurement Applications

Guide ... 142

BJT Output Characteristics Curve145
BJT Output Characteristic Curves (Using External DC
Power Supply) ...156
LC Oscillator Circuit Temperature vs. Frequency
Characteristics Curve ..161
Fuse Endurance Test ...169
LED Forward Bias Voltage Characteristics Curve173
LED Forward Bias Voltage Characteristics Curve (Using
External Power Supply and Digital Multimeter)178
Barcode Scanner Measurement Application182

System Limitations ... 187

Appendix .. 189

MQTT Remote Control Example190

 TABLE OF CONTENTS

5

MQTT Measurement Example 195

Reference Materials ... 197

 MPO-2000 Python Tutorial & Application Handbook

6

System Operation and Architecture

In a typical scenario, after booting up, MPO-2000 is controlled by the

main control software to operate various functions of the

oscilloscope. Users operate the oscilloscope's functions through the

on-screen menus, panel buttons, and knobs. Python scripts start

running when the user clicks on the pre-installed Python APP by

selecting the 'μPy/Exit' button. At this point, the main control

software invokes the Python interpreter to execute the .py file in the

script's directory. Users can also directly run Python scripts written

by themselves from the file utility by selecting internal flash disks or

USB drives containing .py files. For the main control software, the

Python script run by the interpreter is an independently running

software. The communication of commands and data between the

main control software and Python scripts is achieved through the

socket communication protocol, and the transmitted commands use

the SCPI commands commonly used in remote control. Therefore,

before controlling various functions of the oscilloscope, Python

scripts must establish a socket connection. Once the socket

connection is successfully established, the transmission of various

commands can begin. The following diagram illustrates the Python

system architecture of MPO-2000.

 System Operation and Architecture

7

Software block diagram

MPO-2000 integrates not only the functions of an oscilloscope but

also various other devices such as an arbitrary waveform generator,

a spectrum analyzer, a digital multimeter, and a power supply unit.

We also provide a basic Python Library for greater user convenience.

Among these devices, the oscilloscope, arbitrary waveform

generator, digital multimeter, and power supply unit operate

independently, and the settings in the Python Library for each

device do not interfere with each other. However, since our

spectrum analyzer operates by processing time-domain sampled

data using FFT (Fast Fourier Transform), there may be conflicts and

anomalies if you wish to control both the oscilloscope and the

spectrum analyzer simultaneously using the Python Library. Special

attention is needed in such cases.

 MPO-2000 Python Tutorial & Application Handbook

8

MPO-2000 is designed to meet the requirements of small-scale

automated testing, particularly suitable for simple and repetitive

measurements and control. Under the control of Python scripts,

measurement data can be directly evaluated on the local machine,

eliminating the need to transfer waveform data or measurement

data back to the host PC for evaluation. This simplifies the test

system architecture and also offers energy savings and reduced

carbon emissions. For some simple testing applications, only one

MPO-2000 unit, along with the necessary probes and test fixtures, is

required.

MPO-2000 also provides a Python GUI library, allowing users to

design their own graphical information displays on the machine's

screen, including custom menus, measurement data, statistical

charts, I-V characteristic curves, and more.

When the built-in devices are insufficient to meet testing

requirements, such as insufficient DC power voltage or power,

MPO-2000 can cooperate with external devices controlled by Python

scripts via a USB host port, controlling external devices like the GW

Instek PSW, PFR, and PPX power supply series. It's important to

note that the connected devices must use the USB CDC-ACM

protocol to communicate commands and data with MPO-2000. In

addition to the USB interface, MPO-2000 can also control external

devices for collaborative testing through network interfaces using

the socket protocol.

The diagram below illustrates an example of MPO-2000 controlling

external devices for collaborative testing and uploading

measurement data to a server or the cloud.

 System Operation and Architecture

9

Collaborative testing example

Under the control of Python scripts, the components of the graphics

library in MPO-2000 also support data input from USB keyboards,

mouse, and barcode scanners, making the human-machine interface

operation of the testing system more convenient.

Gateway

 MPO-2000 Python Tutorial & Application Handbook

10

Differences Between Basic and

Professional Versions

The MPO-2000 series is categorized into two versions, Basic and

Professional, based on functional specifications. Apart from

differences in bandwidth, the model code suffix ‘B’ represents the

Basic version, which has fewer system resources available for

Python script execution. The ’P’ suffix represents the Professional

version, which offers more system resources for Python script

execution. Python APP provided by MPO-2000 can be executed

directly on both Basic and Professional models without being

restricted by the three functional differences described below. For

the individual execution of Python APP, some may require suitable

circuit boards or external devices, as described in the documentation

for each Python APP. Users can also copy the source code of Python

APP from the menu, modify it as needed, and save it to the internal

disk for execution. Scripts modified from Python APP will be subject

to the three functional differences described below when executed

on Basic models. The following are the four functional differences

between the Basic and Professional versions:

Python Script Memory Usage 11

External USB Device Support 12

Python Graphics Library Support 13

Packaging Python Scripts into a Python App 14

 Differences Between Basic and Professional Versions

11

Python Script Memory Usage

The Basic version of Python scripts uses a limited amount of

memory and is suitable for smaller-scale control software. For

applications that require waveform data capture and processing, it is

recommended to set the sampling points to 1000 points. Otherwise,

you may encounter insufficient memory situations.

The Professional version of Python scripts, on the other hand, can

utilize more memory and handle more complex control software.

For cases requiring waveform data capture and processing, it is

advisable to set the sampling points to a maximum of 100,000 points.

The actual available memory space may vary depending on user-

defined variables and the size of the software. Users should make

use of the gc module to release unused memory and avoid variables

used within functions continuously occupying additional memory.

 MPO-2000 Python Tutorial & Application Handbook

12

External USB Device Support

The Professional version of the device, under the control of Python

scripts, can control external devices with USB CDC-ACM protocol

support through the front-panel USB host port. The Basic version

does not support this feature.

Currently, the USB CDC-ACM devices supported by MPO-2000

include our PSW series, PFR series, and PPX series power devices. If

you have requirements for other products control, please consult

with us first. Other devices with USB interfaces not produced by

GW Instek are not supported because their driver mechanisms may

differ from those of our products.

In conjunction with the use of the Professional version's graphical

interface, we also provide support for USB HID protocol keyboards,

mouse, and barcode scanners. Users can use the mouse for graphical

interface operations and can also input text messages in automated

test programs, facilitating the recording and archiving of the model,

serial number, and measurement data of the DUT (Device Under

Test).

 Differences Between Basic and Professional Versions

13

Python Graphics Library Support

To enable richer graphical user interfaces for Python application

scripts on the MPO-2000 series, we have ported the LVGL (Light and

Versatile Graphics Library) to the system. LVGL is a MIT-licensed

open-source project available on the GitHub website. If users need to

design their own graphical user interfaces, charts, or modify Python

apps that utilize the LVGL library, they must do so on the

Professional version of the MPO-2202P/2204P.

 MPO-2000 Python Tutorial & Application Handbook

14

Packaging Python Scripts into a Python App

In addition, the Professional version also includes the capability to

package Python scripts into Python APP installation file(.xpy).

Advanced users can package the relevant files of their designed

Python scripts and provide them for installation on specific

machines. When packaging, users must prepare a list of MAC

addresses and serial numbers for the machines they intend to install

on. Only machines appearing on the list are allowed to install this

Python APP. Considering the intellectual property rights of third-

party APP developers, the source code of the installed Python APP

is not available for copying and downloading, and users cannot

access the Python script source code on the machine. This serves the

purpose of protecting intellectual property rights.

Users who have purchased the Basic version of the MPO-

2102B/2104B can upgrade to the Professional version to enable

graphical user interface Python script development.

 Python Basic

15

Python Basic

In this chapter, we will introduce the basic syntax of Python,

allowing beginners to quickly get started.

When writing Python scripts, it's important to note that our system

only supports ASCII code. If your code contains multi-byte

characters such as UTF-8, UTF-16, BIG5, or GB2312, it may lead to

display errors in our provided online editor or runtime errors.

Coding Style Guides .. 17

Comments ... 19
Single-line Comment... 19
Multi-line Comment .. 20

Variables .. 21

Data Types ... 22
Integer ... 23
Floating Point ... 23
String .. 24
Boolean.. 24
Tuple .. 25
List.. 27
Dictionary ... 28

Array .. 30

Operators .. 32
Arithmetic Operators .. 32
Comparison Operators ... 33
Logical Operators .. 34

Control Flow Statements ... 35
If Statement .. 35
For Loop Statements .. 36
While Statement ... 38

Functions .. 39
Syntax and Usage of Functions ... 39

 MPO-2000 Python Tutorial & Application Handbook

16

Using Global Variables in Functions ... 41
Lambda Function .. 42

Class ... 43
Creating a Class .. 43
Creating an Object... 44
Accessing Attributes ... 44
Using Methods ... 45
Inheritance .. 45

Print .. 47

Module .. 50

Import ... 51
Using the import statement ... 51
Loading Modules and Classes from a Library 52

File .. 53
Write to a File ... 54
Read File .. 54

Try… Except ... 55

Garbage Collection .. 59

Common Errors ... 62

 Python Basic

17

Coding Style Guides

The naming style for Python script is recommended to follow the

PEP 8 naming conventions. Here are some basic naming rules for

Python script:

 Use four spaces for indentation; do not use tabs.

 Names of variables and functions should be concise and

descriptive. Use meaningful words and phrases to describe the

purpose of variables and functions whenever possible.

 Variable names should be in lowercase, and words can be

separated by underscores, e.g., “my_variable”.

 Function names should be in lowercase, and words can be

separated by underscores, e.g., “my_function”.

 Class names should use CamelCase, where the initial letter of

each word is capitalized, e.g., “MyClass”.

 Constant names should be in all uppercase, and words can be

separated by underscores, e.g., “MY_CONSTANT”.

 Module names should be in lowercase, and words can be

separated by underscores, e.g., “my_module.py”

 MPO-2000 Python Tutorial & Application Handbook

18

In addition, consider the following points:

 Avoid using abbreviations and single characters as variable

and function names unless they are very common and widely

understood.

 Avoid using variable or function names that are the same as

built-in function and class names.

 Follow the principle of naming consistency. Use similar

naming styles throughout the codebase to make the script

more readable and maintainable.

 Python Basic

19

Comments

In Python script, you may need to add some comments to explain

your script and improve its readability; they will not be executed by

the interpreter. Comments are used to provide explanations about

the script, making the script easy to maintain in the future.

Here are the ways to use comments in Python:

Single-line Comment

You can add explanatory text in your script using the "#" symbol as

the beginning of a comment, extending until the end of that line.

Doing this allows you to add explanations within your script

without affecting the script's execution.

For example:

Python code

This is a single-line comment
x = 5 # This is a code line with a comment

 MPO-2000 Python Tutorial & Application Handbook

20

Multi-line Comment

You can also use three single quotes ''' or double quotes """ to

enclose a block of description text. Doing so allows you to add

multi-line comments in your code without affecting its execution.

For example:

Python code

'''
This is a multi-line comment,
It can be used to explain how the code works
'''
x = 5 # This is a code line with a comment

Good comments can improve code readability, making your code

easier to understand and maintain.

 Python Basic

21

Variables

Variables are containers in Python scripts used to store data. We can

use the equal sign to assign values to variables.

For example:

Python code

x = 5
y = "Hello"

The above code defines two variables, x and y. The value of x is 5,

and the value of y is the string “Hello”. Variable names can use

letters, numbers, and underscores, but variable names cannot start

with a number.

 MPO-2000 Python Tutorial & Application Handbook

22

Data Types

Each variable in a Python script has its corresponding data type.

Common data types include integers, floating-point numbers,

strings, booleans, tuples, lists, and dictionaries.

You can use the type() function to query the data type of a variable.

For example:

Python code

X = 5
print(type(x)) #Output:<class ’int’>

y = 3.14159
print(type(y)) #Output:<class ’float’>

z = “Hello”
print(type(z)) #Output:<class ’str’>

w = True
print(type(w)) #Output:<class ’bool’>

 Python Basic

23

Integer

Integer is a fundamental data type. You can define integers using the

following methods:

Python code

x = 10
y = -5

Integers support basic mathematical operations such as addition,

subtraction, multiplication, division, modulo (remainder), and

exponentiation:

Python code

x = 10 + 5 # x will be set to 15
y = 10 - 5 # y will be set to 5
z = 10 * 5 # z will be set to 50
w = 10 / 5 # w will be set to 2.0 (floating point number)
r = 10 % 3 # r will be set to 1
p = 10 ** 3 # p will be set to 1000

Floating Point

Floating-point is another fundamental data type used to represent

real numbers. Floating-point numbers can be defined as follows:

Python code

x = 3.14159
y = -0.25

Floating-point numbers support the same mathematical operations as

integers, as well as some additional operations such as rounding,

flooring, and taking absolute values:

 MPO-2000 Python Tutorial & Application Handbook

24

Python code

x = 3.14159
y = round(x, 2) # Round to 2 decimal places
z = int(x) # Get the integer part
w = abs(x) # Get the absolute value

String

A string is another fundamental data type used to represent text.
You can define a string using the following methods:

Python code

x = "Hello, world!"

y = 'This is a string.'

We can perform many operations on strings, such as concatenation,

splitting, and indexing:

Python code

x = "Hello, "
y = "World!"
z = x + " " + y # z will be set to "Hello world"
w = x[0] # w will be set to "H"
v = x[0:5] # v will be set to "Hello"

Boolean

A boolean value is a data type that can only have two possible

values: True or False. They can be defined as follows:

Python code

x = True

y = False

 Python Basic

25

Boolean values are commonly used in conditional statements to

control the flow of a program.

Python code

x = 5
if x > 3:

 print("x is greater than 3")

Tuple

Tuple is an immutable sequence used to store an ordered set of

values. Unlike a list, the elements of a tuple cannot be modified.

Here's a simple example of using a tuple:

Python code

Create a tuple
my_tuple = (1, 2, 3, "hello", "world")

Access elements in the tuple
print(my_tuple[0]) # 1
print(my_tuple[3]) # "hello"
Cannot modify elements in the tuple
my_tuple[0] = 4

In the example above, we use parentheses () to create a tuple

containing integers and strings, and store it in the variable my_tuple.

Then, we use indexing to access elements in my_tuple. However,

because the elements of a tuple cannot be modified, attempting to

use indexing to change the value of an element will result in an error

at the last line of this script.

 MPO-2000 Python Tutorial & Application Handbook

26

Tuples are similar to lists and also have some useful built-in

functions, such as:

len(): Returns the number of elements in the tuple.

count(): Returns the number of times a specified element appears in

the tuple.

index(): Returns the index of the first occurrence of a specified

element in the tuple.

Python code

Create a tuple
fruits = ('apple', 'orange', 'banana', 'grape', 'orange')

Use index() method to find the index position of 'banana' in the tuple

print(fruits.index('banana')) # Output: Index position: 2

Get the length of the tuple using len()
print(len(fruits)) # Output: Number of fruits: 5

Count the occurrences of the element 'orange' in the tuple using count()

print(fruits.count('orange')) # Output: Number of occurrences of ‘orange’: 2

Since tuples are immutable, they are typically used to store a fixed

number of values. When deciding whether to use a list or a tuple,

consider whether your program needs to modify elements within

the sequence. If modification is required, use a list; otherwise, use a

tuple.

 Python Basic

27

List

Lists are a mutable data type used to store multiple items. You can

define a list using the following methods:

Python code

x = [1, 2, 3]
y = ['apple', 'banana', 'orange']

Lists are mutable, which means items can be added, removed, or

modified within a list. You can use indices to access items in a list:

Python code

x = [1, 2, 3]
print(x[0]) # will output 1
x[0] = 4 # change the first item to 4
print(x[0]) # will output 4

Lists support many operations, such as adding, deleting, and

sorting:

Python code

x = [1, 2, 3]
x.append(4) # add 4 to the end of the list
print(x) # will output [1, 2, 3, 4]
x.remove(2) # remove the item with value 2
print(x) # will output [1, 3, 4]

 MPO-2000 Python Tutorial & Application Handbook

28

Dictionary

A dictionary is a data type of key-value pairs used to store multiple

items, and it can be defined using the following way:

Python code

x = {'name': 'Alice', 'age': 30, 'gender': 'female'}

y = {'apple': 1, 'banana': 2, 'orange': 3}

Each item in the dictionary has a key and an associated value, and

you can use the key to retrieve the value from the dictionary:

Python code

x = {'name': 'Alice', 'age': 30, 'gender': 'female'}
print(x['name']) # will output "Alice"
print(x['age']) # will output 30

The dictionary supports various operations, such as adding,

deleting, and modifying items:

Python code

x = {'name': 'Alice', 'age': 30}
x['gender'] = 'female' # add a new key-value pair
print(x) # will output {'name': 'Alice', 'age': 30, 'gender': 'female'}
del x['age'] # remove the item with key 'age'
print(x) # will output {'name': 'Alice', 'gender': 'female'}

Besides, dictionaries also have some useful built-in functions, such

as:

len(): Returns the number of key-value pairs in the dictionary.

keys(): Returns all the keys in the dictionary.

values(): Returns all the values in the dictionary.

items(): Returns all the key-value pairs in the dictionary as tuples.

 Python Basic

29

When using dictionaries, it's important to note that keys must be

unique. If the same key is used multiple times, the last value

assigned to it will replace the previous value. If you need to

maintain order in a dictionary, you can use the OrderedDict class

from the collections module.

Dictionaries are widely used in Python programming, especially

when dealing with complex data structures and algorithms. This

chapter introduces the fundamental data types supported in Python,

including integers, floats, booleans, strings, tuples, lists, and

dictionaries. Understanding these data types is crucial for learning

Python programming. Once you are familiar with these

fundamental data types, you can begin to explore more advanced

topics such as functions, conditional statements, loops, and more.

 MPO-2000 Python Tutorial & Application Handbook

30

Array

The Python array module provides a numeric sequence called an

array, which is similar to Python lists but is limited to storing data of

a fixed type, such as integers or floating-point numbers. Using the

array module can save memory and improve script execution speed.

Here is an example of using the array module:

Python code

 import array

 # Create an array of integers
 my_array = array.array('i', [1, 2, 3, 4, 5])

 # Access elements in the array
 print(my_array[0]) # 1
 print(my_array[1]) # 2

 # Modify elements in the array
 my_array[0] = 6

 # Iterate over elements in the array
 for element in my_array:
 print(element)

In the above example, we create an array containing integers using

the array.array() function and store it in the my_array variable. 'i' is

a character code representing data of type int. Next, we access

elements in my_array using indexing and modify them in the same

way. Finally, we iterate through the elements in my_array using a

for loop.

 Python Basic

31

The array module also provides other functions and methods for

manipulating arrays, such as:

append()：Adds an element to the end of the array.

extend()：Appends all elements from another array to the end of the

current array.

When using the array module, make sure that the data type you

choose matches the type of data your application needs to store. If

you need to store data of different types, consider using Python lists

instead of arrays.

 MPO-2000 Python Tutorial & Application Handbook

32

Operators

Python scripts can perform various operations using a variety of

operators, including arithmetic operators, comparison operators,

and logical operators, among others. These operators can assist you

in performing mathematical calculations, logical evaluations, and

more.

Arithmetic Operators

When performing basic mathematical operations, we can use the

following arithmetic operators:

 Addition: ‘+’

 Subtraction: ‘-‘

 Multiplication: ‘*’

 Division: ‘/’

 Modulus: ‘%’

 Exponentiation: ‘**’

Here are some simple examples:

Python code

 x = 5
 y = 3
 print(x + y) # Output:8
 print(x - y) # Output:2
 print(x * y) # Output:15
 print(x / y) # Output:1.6666666666666667
 print(x % y) # Output:2
 print(x ** y) # Output:125

 Python Basic

33

Comparison Operators

When we need to compare two values, we can use comparison

operators and obtain a Boolean value (True or False). We can use the

'if' statement to handle the two possible comparison outcomes. Here

are the comparison operators in Python:

 Equal: ‘==’

 Not Equal: ‘!=‘

 Less Than: ‘<’

 Greater Than: ‘>’

 Less Than or Equal To: ‘<=’

 Greater Than or Equal To: ‘>=’

Here are some simple examples:

Python code

points = 85
if points <= 60:

 print("You need to work harder!")
else:

 print("You're doing great!")

 MPO-2000 Python Tutorial & Application Handbook

34

Logical Operators

When we need to perform logical evaluations in a Python script, we

can use logical operators in conjunction with the if statement. Here

are three common logical operators:

 ‘and’ operator

 ‘or‘ operator

 ‘not’ operator

Here are some simple examples:

Python code

x = 5
y = 25

if (x > 10) or (y < 20):
 print("At least one condition is true.")
else:

 print("Both conditions are false.")

 Python Basic

35

Control Flow Statements

We can use control flow statements to control the execution flow of a

script. Here are common control flow statements in Python:

If Statement

The if statement can be used to determine whether a condition is

met. If the condition is met, the corresponding scripts is executed.

For example:

Python code

x = 5
if x > 0:
 print("x is greater than 0")
else:

 print("x is not greater than 0")

The else part is optional, and you can omit it as needed. If else is

omitted, the program will continue executing the next statement

when the condition is false.

We can also use the elif statement to handle multiple different

conditional checks. For example:

Python code

x = 5

if x > 0:

 print("x is greater than 0")

elif x == 0:

 print("x is equal to 0")

else:

 print("x is less than 0")

 MPO-2000 Python Tutorial & Application Handbook

36

For Loop Statements

A for loop is a common looping structure in Python that allows you

to repeatedly execute the same script code. It can also be used to

iterate through a sequence of lists, tuples, strings, or other iterable

objects. Here is an explanation of how the for loop works:

for variable in iterable:
 Write the code to be executed here

variable: During each iteration of the loop, an element from the

iterable object is assigned to this variable. You can choose any name

for this variable, typically related to the elements, such as “item” or

“element.”

iterable: This is an object that contains multiple elements, such as a

list, tuple, string, etc. The for loop will iterate through each element

of this object and assign it to the above variable.

Write the code to be executed here: This code will be executed once

for each element in the iterable object.

Here is a simple for loop that demonstrates how to use it to display

each element in a list:

 Python Basic

37

Python code

fruits = ['apple', 'banana', 'cherry']

for x in fruits:

 print(x)

Output

apple
banana

 cherry

In this example, the variable x iterates through each element in the

list fruits sequentially, and outputs the current element in each

iteration.

We can also use the range() function to generate a sequence of

numbers and then iterate through each number in this sequence

using a for loop.

Here's an example demonstrating how to use the range() function

and a for loop to display integers from 1 to 5.

Python code

for x in range(1, 6):
 print(x)

Output

1
2
3
4

 5

In this example, range(1, 6) generates a sequence from 1 to 5. The for

loop iterates through each number in this sequence one by one and

outputs it to the screen in each iteration.

 MPO-2000 Python Tutorial & Application Handbook

38

While Statement

The while loop is used to repeatedly execute a block of code as long

as a specified condition is true. When the condition is no longer met,

the loop stops executing. Here is an explanation of how the while

loop is used:

while condition:
 Code to be executed within the loop

Condition: This is a Boolean expression. The loop continues to

execute as long as the value of this expression is True. When the

condition's value becomes False, the loop stops.

Code to be executed within the loop: This is the code block that you

want to run each time the loop executes.

Python code

i = 0
while i < 5:
 print(i)

 i += 1

Please note that, to prevent infinite loops, designers must ensure

that the code within the loop will eventually result in the condition

becoming False so that the loop can terminate. If the condition never

becomes False, the loop will run indefinitely.

 Python Basic

39

Functions

What is a Function?

Functions are encapsulated and reusable script blocks. You can think

of functions as tools that can take input (parameters), perform

certain operations, and then output results (return values).

Functions are very commonly used in script design; they allow us to

organize scripts better, making the entire script easier to read,

maintain, and expand.

Syntax and Usage of Functions

In Python, the syntax of functions is very simple. Here is an

example:

Python code

def add(a, b):
 c = a + b

 return c

Here, def is a keyword, indicating that you are defining a new

function. add is the name of the function, and you can choose a

meaningful name yourself. a and b are parameters of the function;

they are the inputs to the function. The script block inside the

function can operate on these parameters. Finally, the return

keyword indicates the output of the function, which is its return

value c.

 MPO-2000 Python Tutorial & Application Handbook

40

Once you have defined a function, you can use it. Here's an example

of calling add:

Python code

result = add(2, 3)

 print(result) # 5

Here, we passed 2 and 3 as arguments to the add function, stored the

return value of 5 in result, and printed it out.

Functions can also have no parameters or return values. For

example:

Python code

def say_hello():
 print("Hello!")

 say_hello() # Call the Function

In this example, the say_hello function has no parameters and no

return value; it simply prints a “Hello!” string.

 Python Basic

41

Using Global Variables in Functions

In a function, you can use global variables, which are variables

defined outside the function. Here's an example:

Python code

x = 10

def add():
 global x # Set x as a global variable
 x += 1
 return x
print(add()) # 11

 print(x) # 11

In this example, we have defined a global variable x and then

modified it within the add function. To use a global variable, you

need to declare it in a function using the global keyword.

 MPO-2000 Python Tutorial & Application Handbook

42

Lambda Function

In addition to regular functions, Python also supports lambda

functions. Lambda functions are a type of simple anonymous

function, typically used for operations like simple calculations and

sorting. Here is an example:

Python code

add = lambda x, y: x + y
result = add(2, 3)
print(result) # 5

In this example, we have defined a lambda function using the

lambda keyword. This function takes two parameters, x and y, and

returns their sum. We have assigned this lambda function to the

variable add and then called it just like a regular function.

 Python Basic

43

Class

A class is a blueprint or template in Python that allows you to

encapsulate related data and behavior into a single object. A class

contains attributes and methods that define the behavior of objects

created from that class. Using class can help structure script code

and promote reusability.

Creating a Class

We can use the keyword class to define a class. A class consists of

attributes, which are variables of the class, and methods, which are

functions of the class.

Here is a simple example of a class definition:

Python code

class MyClass:
 def __init__(self, value):
 self.x = value

 def get_x(self):
 return self.x

 def set_x(self, value):

 self.x =value

In the code above, we have defined a class called MyClass. This

class has an attribute x and two methods, get_x and set_x. The first

parameter of methods is always self, which refers to the instance of

the class itself. When we call the class to create a usable object, we

don't need to pass an actual self parameter; Python handles it

automatically for you. In this example, we have also defined a

 MPO-2000 Python Tutorial & Application Handbook

44

special method called __init__, known as the constructor function.

This method is used to initialize object attributes when creating an

object. In this case, the __init__ method sets the input parameter

value as the initial value for the attribute x.

Creating an Object

Once we define a class, we can create objects of that class in the

script for practical use. Here is a simple example of creating objects

using a class:

Python code
 my_object = MyClass(10)

The above code creates an object of MyClass named my_object and

sets its attribute x to 10.

Accessing Attributes

Once we have created an object of a class, we can use the dot

operator (.) to access the properties of this object. Here are examples

of accessing object properties:

Python code
my_object = MyClass(10)

 print(my_object.x) # Output 10

In the above code, we created an object of MyClass named

my_object and set its attribute x to 10. Then, we used the dot

operator to access this attribute.

 Python Basic

45

Using Methods

We can use the dot operator to invoke methods of an object. Here

are examples of invoking object methods:

Python code
my_object = MyClass(10)
print(my_object.get_x()) # Output 10

my_object.set_x(20)

 print(my_object.get_x()) # Output 20

In the above code, we created an object of MyClass and initialized

its attribute x to 10. Then, we called the get_x method and printed its

output value. Next, we called the set_x method to set the object's

attribute x to 20. Finally, we called the get_x method again and

printed its output value.

Inheritance

In Python, you can use inheritance to create new classes that inherit

the attributes and methods of a parent class. Continuing from the

previous MyClass class, here is a simple example of inheritance:

Python code
class MyChildClass(MyClass):
 def __init__(self, x, y):
 super().__init__(x)
 self.y = y

 def get_y(self):
 return self.y

 def set_y(self, y):

 self.y = y

 MPO-2000 Python Tutorial & Application Handbook

46

In the above code, we have defined a subclass named MyChildClass

which inherits all the attributes and methods from MyClass

additionally, the subclass has a new attribute y and two new

methods get_y and set_y.

In the constructor of the subclass, we use the super() function to call

the parent class's __init__ method to set the parent class's attribute x.

Then, we set the subclass's attribute y.

In Python, classes are used to organize code. Classes consist of

attributes and methods and can be used to achieve code structuring

and reusability. The dot operator is used to access the attributes and

methods of objects. Furthermore, inheritance can be used to create

new classes that inherit the attributes and methods of the parent

class, while also allowing the addition of new attributes and

methods.

 Python Basic

47

Print

We often use Python's print() to display text messages or variable

contents, helping with script debugging. When debugging with the

MPO-2000’s WebREPL feature, the messages printed by print() will

appear on the connected browser's WebREPL page.

We can use the following symbols to format the output of print():

%s - string

For example

Python code

name = "John"
print("My name is %s" % name)

Output

My name is John

%d - integer

For example

Python code
age = 25
print("My age is %d years old" % age)

Output
My age is 25 years old

 MPO-2000 Python Tutorial & Application Handbook

48

%f – float

For example

Python code
height = 1.75
print("My height is %.2f meters" % height)

Output
My height is 1.75 meters

%x - hexadecimal integer

For example

Python code
number = 255
print("The hexadecimal representation of this number is %x" % number)

Output
The hexadecimal representation of this number is ff

%o - octal integer

For example

Python code
number = 255
print("The octal representation of this number is %o" % number)

Output

The octal representation of this number is 377

 Python Basic

49

These formatting symbols can be used in combination with other

parameters of the print() function, as shown in the following

example:

Python code

name = "John"
age = 25
height = 1.75
print("My name is %s, my age is %d years old, and my height is %.2f
meters." % (name, age, height))

Output
My name is John, my age is 25 years old, and my height is 1.75 meters.

 MPO-2000 Python Tutorial & Application Handbook

50

Module

The modules in Python are a way of organizing script code, allowing you

to group related classes, functions, and variables within a single file for

more efficient code management and reusability. The main purpose of

modules is to provide a means of modularizing script code, making it

easier to maintain and extend. Here are the steps for creating and using

modules in Python:

1. Create a new file with a .py extension, for example, my_module.py.

2. Define the script code for the functions, classes, variables, etc., that

you want within the file.

3. In the file where you need to use that module, use the import

keyword to import the module.

For example, create a function named my_function in

my_module.py:

Python code
def my_function():

print("Hello from my_function!")

Load my_module in another script file that requires the use of

my_function:

Python code

import my_module
my_module.my_function() # Call my_function

 Output

Hello from my_function!

 Python Basic

51

Import

We can use import to bring external libraries, modules, and classes

into the program so that we can utilize the functions, classes, and

methods they provide.

Using the import statement

Using the import statement allows you to import external modules

and libraries in Python. By using the dot operator, you can also load

specific modules and classes from a library. Here is a simple

example demonstrating how to use the import statement in Python:

Python code
import time

while True:
 print("Hello, World!")
 time.sleep(1)

In this example, we use the import statement to import the time

library. After printing 'Hello, World!' each time, we use the

time.sleep() function to pause the script for 1 second before

continuing.

 MPO-2000 Python Tutorial & Application Handbook

52

Loading Modules and Classes from a Library

A library typically contains multiple modules and classes. When

using the import statement to import a library, it is possible to load

specific classes or functions from the library without importing the

entire module. Here is a simple example demonstrating how to

import the sqrt function from the math module in Python:

Python code
from math import sqrt

number = 16
square_root = sqrt(number)
print("The square root of", number, "is", square_root)

 Python Basic

53

File

Regarding file access, the standard method for accessing files is by

using the built-in function open(). The default behavior of this

function is for reading mode, while for writing mode, you need to

provide the second parameter 'w'. In binary reading mode, the

second parameter is 'rb', and in binary writing mode, it is 'wb'.

By specifying different paths, we can access files stored in different

locations. Here are several paths for accessing files:

 /mnt/disk : Stored in the internal flash memory of the machine.

Due to limitations in storage space and the number of write cycles

of flash memory cells, we do not recommend storing a large

amount of data or frequently written files here.

 /mnt/usb : Stored on an external USB storage device. Before using

it, please ensure that the USB storage device is properly connected,

and the file system is recommended to be in FAT32 format.

 /tmp/remote : Stored on remote disks. Before using it, please

ensure that the network cable is properly connected, remote PC

sharing settings are configured, and local network and related

settings (APP -> Mount Remote Disk) are completed.

 MPO-2000 Python Tutorial & Application Handbook

54

Write to a File

Here, creating a file under /mnt/disk is used as an example.

Handling files in different paths is similar.

Python code
f = open('/mnt/disk/data.txt', 'w')
f.write('some data')
The “9” in console is the number of bytes that were written with the write() method.

f.close()

Read File

Continuing from the previous file writing operation, the file reading

operation under /mnt/disk is as follows.

Python code
f = open('/mnt/disk/data.txt')
f.read()
The “some data” in console is the file contents .
f.close()

 Python Basic

55

Try… Except

When writing Python scripts, you may encounter some errors, such

as when you attempt to execute a function that doesn't exist,

manipulate an uninitialized variable, or encounter syntax errors, and

so on. These errors will cause your script to stop executing and often

result in an error message being printed to the console. To prevent

your script from crashing, you can use the try-except statement to

catch and handle these errors. In Python script design, error

handling is crucial, as it is a key factor in whether the script can run

stably.

When working with file handling, you may encounter situations like

files not existing or read errors. When performing network

operations, you might face scenarios such as failed network

requests, server connection issues, or timeouts. When taking user

input, invalid data from the user can lead to subsequent script

processing errors. During mathematical operations, division by zero

might occur. Improper data input during type conversion can also

result in processing errors. All of these can lead to errors and crashes

during script execution. Therefore, whether a Python script can run

stably is closely related to how well the script designer handles

exceptions.

 MPO-2000 Python Tutorial & Application Handbook

56

Here's a simple example to illustrate how to use the try-except

statement:

Python code
try:
 # code that might raise an error goes here
 x = int("hello") # this will raise a ValueError error
except ValueError:
 # handle the ValueError error here

print("Invalid input. Please enter a valid number.")

In the above script code, we use try-except to catch the ValueError

error that may occur when we attempt to convert the string "hello"

into an integer. If a ValueError error occurs, the script code inside

the except block will be executed.

You can also use multiple except blocks to handle different types of

errors:

Python code
try:
 # code that might raise an error goes here
 x = 5 / 0 # this will raise a ZeroDivisionError error
except ZeroDivisionError:
 # handle the ZeroDivisionError error here
 print("Division by zero is not allowed.")
except ValueError:
 # handle the ValueError error here

 print("Invalid input. Please enter a valid number.")

In the above script, we attempt to divide 5 by 0, which results in a

ZeroDivisionError. We use a try-except statement to catch this error,

handle it in the except block, and output a message.

 Python Basic

57

The basic concept of the try-except statement is as follows: try to

execute the script code that may produce an error, and if an error

occurs, jump to the corresponding except block where the error is

handled. If the script runs without any issues, it won't jump to the

except block.

You can also use a generic except block to handle errors of all types:

Python code
try:
 # code that might raise an error goes here
 x = int("hello") # this will raise a ValueError error
except:
 # handle all types of errors here
print("An error occurred in the program.")

In the above script, we used a generic except block to handle all

types of errors. If any type of error occurs, it will jump to this except

block.

Finally, you can also use an else block within the try-except

statement. This else block executes after the script inside the try

statement runs normally and only if there are no errors. For

example:

Python code
try:
 # code that might raise an error goes here
 x = 5 / 2 # this will not raise an error
except ZeroDivisionError:
 # handle the ZeroDivisionError error here
 print("Division by zero is not allowed.")
else:
 # code that will be executed if no errors occur
 print("The program ran successfully.")

 MPO-2000 Python Tutorial & Application Handbook

58

In the script above, we used an else block to determine if the script

ran successfully. Since no errors occurred, the script within the else

block gets executed.

Using a try-except statement can help us catch and handle any

errors that may occur within the script, thereby preventing the

software from crashing. When using a try-except statement, you can

use different except block as needed to handle different types of

errors, or you can use a generic except block to handle all types of

errors. Additionally, you can also use an else block to determine if

the script ran successfully.

 Python Basic

59

Garbage Collection

The gc module is used to reclaim memory that is no longer in use,

and it can improve the efficiency of script execution. Below is an

explanation of how to use the gc module:

1. Importing the Module

Before using the gc module, you need to import it. You can import

the gc module into your program using the following code:

Python code
 import gc

2. Manual Memory Recycling

If you wish to manually recycle memory in certain situations, you

can use the following code:

Python code
 gc.collect()

3. Checking Memory Usage

The gc module provides mem_free() and mem_alloc() functions to

inquire about the current memory usage and available memory

space. Specifically, the mem_free() function returns the number of

bytes of currently available RAM (Random Access Memory) space.

The mem_alloc() function returns the number of bytes of allocated

RAM space. You can use these functions in your Python code to

query the current RAM usage.

 MPO-2000 Python Tutorial & Application Handbook

60

Here is an example code that utilizes the gc module to display

available and allocated RAM space:

Python code
import gc
import gds_info

Clear the RAM space
gc.collect()

Query the current available RAM space
free_mem = gc.mem_free()
print("1. Free memory: {} bytes".format(free_mem))

Query the allocated RAM space
alloc_mem = gc.mem_alloc()
print("alloc_mem: %d"%gc.mem_alloc())

Create a list to allocate RAM space
s=[0]*100

Query the allocated RAM space
alloc_mem = gc.mem_alloc()
print("alloc_mem: %d"%gc.mem_alloc())

Output(Professional version)

1. Free memory: 20424048 bytes
alloc_mem: 67248
alloc_mem: 67760

Output (Basic version)
1. Free memory: 954800 bytes
alloc_mem: 69808
alloc_mem: 70320

This example code demonstrates how to use the gc module to

query available and allocated RAM space.

 Python Basic

61

4. Enable/Disable Garbage Collection

You can use the following script to enable/disable garbage

collection:

Python code
 gc.enable()
 gc.disable()

Among them, gc.enable() is used to enable garbage collection, and

gc.disable() is used to disable garbage collection.

 MPO-2000 Python Tutorial & Application Handbook

62

Common Errors

The following are some common Python error messages and their

explanations. If you understand the meanings of these error

messages, you can quickly find the corresponding solutions to

resolve issues.

1. ArithmeticError

This error message indicates a general arithmetic exception error,

which includes anomalies in mathematical operations, such as

division by zero.

2. AssertionError

This error message indicates that an assertion in your script has

failed. Please check the content of your script to ensure that

assertions are correct.

3. AttributeError

This error message indicates that you are trying to access an

attribute or method of an object that does not exist. Please check

the object you are trying to access and ensure that the desired

attribute or method exists.

4. EOFError

This error message indicates an unexpected end-of-file

encounter. This typically happens when attempting to read data

from a file but reaching the end of the file.

5. Exception

This error message signifies that an error has occurred; it is a

general error message used to confirm the occurrence of any type

of error.

 Python Basic

63

6. ImportError

This error message indicates that you are trying to import a

module or package that does not exist. Please verify the

correctness of the module name you are trying to import or check

your module path.

7. IndentationError

This error message indicates that there is an indentation error in

your script. Please ensure proper indentation according to

Python syntax.

8. IndexError

This error message indicates an attempt to access an index that

does not exist in a list or array. Please check your index range

and ensure that the index value is within a reasonable range.

9. KeyError

This error message indicates an attempt to access a key in a

dictionary that does not exist. Please check your dictionary and

verify that the key you are trying to access exists.

10. KeyboardInterrupt

This error message indicates that you have pressed the [Ctrl] +

[C] key combination during script execution, forcefully

terminating the script. Please ensure that your [Ctrl] + [C] action

is intentional and handle this interruption signal in your script

when necessary.

11. LookupError

This error message indicates a failed lookup operation.

12. MemoryError

This error message indicates a memory shortage issue during

script execution. Please reduce memory usage in your script or

check for issues like infinite loops or recursive functions.

 MPO-2000 Python Tutorial & Application Handbook

64

13. NameError

This error message indicates the usage of an undefined variable.

Please define the variable in your script.

14. NotImplementedError

This error message indicates an attempt to use a feature or

method that has not yet been implemented. It is often used by

developers in classes to signify that a feature is not yet

implemented but may be in the future.

15. OSError

This error message indicates an error related to the operating

system. Please check your script and find a solution for the

operating system error.

16. RuntimeError

This error message indicates a runtime issue in your script. For

example, a script using a recursive function may encounter a

stack overflow during runtime.

17. StopIteration

StopIteration is typically used to mark the end flag of an iterable

object that has been fully traversed.

18. SyntaxError

This error message indicates that your code has a syntax error.

Please check for errors in your code and make corrections.

19. TypeError

This error message indicates an attempt to use an object in an

unsupported way, such as trying to concatenate a string with a

number. Please check the data type of the object and use it

appropriately.

 Python Basic

65

20. ValueError

This error message indicates an attempt to use a value that is

invalid for a specific operation, such as passing an empty string

to the int() function. Ensure that the value you are using is valid

for the operation.

21. ZeroDivisionError

This error message indicates that you are attempting to perform a

division by zero on a number.

 MPO-2000 Python Tutorial & Application Handbook

66

Oscilloscope Library

We have created Python libraries for various built-in features on the

MPO-2000, making it convenient for users to call. This chapter will

introduce how to use these Python libraries to control this

multifunctional oscilloscope, including the basic Python control

methods for the oscilloscope, arbitrary waveform generator,

spectrum analyzer, digital multimeter, and DC power supply, as

well as the basic Python control methods for the GO-NOGO output

pin.

Basic Oscilloscope Operations with Python 67

Controlling the Built-In Spectrum Analyzer 68

Controlling the Built-In AWG 70

Controlling the Built-In DMM 71

Controlling the Built-In DC Power Units 72

Control Method of GO-NOGO Output Pin 73

 Oscilloscope Library

67

Basic Oscilloscope Operations with Python

We must first load the gds_info module and establish a connection

before we can begin controlling the oscilloscope. The following

example will demonstrate how to establish an oscilloscope

connection and configure its parameters such as channels, horizontal

settings, trigger, and others.

Python code
Import the DSO module and open a socket connection.
import gds_info as gds
dso=gds.Dso()
dso.connect()

Set to the default settings.
dso.default()

Turn on CH1
if not dso.channel.is_on(ch=1):
 dso.channel.set_on(ch=1)

Set the probe ratio, probe type, vertical scale, vertical position of CH1.

dso.channel.set_probe_ratio(ch=1,ratio=1)
dso.channel.set_probe_type(ch=1,type='VOLTAGE')
dso.channel.set_scale(ch=1,scale=0.1)
dso.channel.set_pos(ch=1,vpos=-0.0)

Set the horizontal scale.
dso.timebase.set_timebase(hdiv=1e-05)

Set the trigger mode, trigger level.
dso.trigger.set_mode(mode='AUTo')
dso.trigger.set_level(value=0.0)

Turn off CH1
if dso.channel.is_on(ch=1):

dso.channel.set_off(ch=1)

Close the socket connection
dso. close ()

 MPO-2000 Python Tutorial & Application Handbook

68

Controlling the Built-In Spectrum Analyzer

The following example will demonstrate how to control a spectrum

analyzer, configure parameters such as the source and frequency,

and set the frequency range, and other parameters.

Python code
Import the DSO module and open a socket connection.
import gds_info as gds
dso=gds.Dso()
dso.connect()

Activate the spectrum mode.
if not dso.sa.is_spectrum_mode():
 dso.sa.set_spectrum_mode('ON')

Activate the input source.
if not dso.sa.get_state(_id=1):
 dso.sa.set_state(state='ON',_id=1)

Activate the spectrum trace.
if not dso.sa.is_spectrum_trace(trace_type='NORMAL',_id=1):

 dso.sa.set_spectrum_trace(trace_type='NORMAL',state='ON',_id=1)

set the center frequency to 25 MHz.
dso.sa.set_freq(freq=25e6,_id=1)
get the center frequency.
dso.sa.get_freq(_id=1)

set the span frequency to 25 MHz.
dso.sa.set_span(freq=25e6,_id=1)
get the span frequency.
dso.sa.get_span(_id=1)

set the start frequency to 12.5 MHz.
dso.sa.set_start(freq=12.5e6,_id=1)
get the start frequency.
dso.sa.get_start(_id=1)

 Oscilloscope Library

69

set the stop frequency to 37.5 MHz.
dso.sa.set_stop(freq=37.5e6,_id=1)
get the stop frequency.
dso.sa.get_stop(_id=1)

Set the RBW value in the manual mode.
dso.sa.set_RBW_Manual(rbw=2.5e4, _id=1)

Set the “Span:RBW “ in the auto-RBW mode.
dso.sa.set_Span2RBW_Ratio(ratio='RATIO_1K',_id=1)

Set the window type.
dso.sa.set_window(window=2,_id=1)

Set the vertical scale and unit.
dso.sa.set_scale(scale=2.0e1,unit=0,_id=1)

Set the zero level position.
dso.sa.set_position(position=3.0e0,_id=1)

Deactivate the spectrum mode.
if dso.sa.is_spectrum_mode():
 dso.sa.set_spectrum_mode('OFF')

 MPO-2000 Python Tutorial & Application Handbook

70

Controlling the Built-In AWG

The following example will demonstrate how to control an arbitrary

waveform generator and configure parameters such as waveform,

frequency, amplitude, and more.

Python code
Import the DSO module and open a socket connection.
import gds_info as gds
dso=gds.Dso()
dso.connect()

Activate the AWG(channel 1), and set waveform, frequency,
amplitude, offset at the same time.
if not dso.awg.is_on(ch=1):
 dso.awg.set_on(ch=1,wave='SINE',freq=1e5,amp=2.5e-1,offset=0e0)

Set the load to HighZ.
dso.awg.set_load_highz(ch=1)

Set the load to 50 ohm.
dso.awg.set_load_50ohm(ch=1)

Set the phase to 0.0.
dso.awg.set_phase(ch=1,value=0.0)

Deactivate the AWG(channel 1).
if dso.awg.is_on(ch=1):

 dso.awg.set_off(ch=1)

 Oscilloscope Library

71

Controlling the Built-In DMM

The following examples will demonstrate how to control a digital

multimeter and configure various measurement modes.

Python code
Import the DSO module and open a socket connection.
import gds_info as gds
dso=gds.Dso()
dso.connect()

Activate the DMM.
if not dso.dmm.is_on():
 dso.dmm.set_on()

Set DMM's mode as ACV.
dso.dmm.set_mode_ACV(range='AUTO')
Get the DMM's measurement result.
dso.dmm.get_value()

Set DMM's mode as DCA.
dso.dmm.set_mode_DCA()
Get the DMM's measurement result.
dso.dmm.get_value()

Set DMM's mode as temperature.
dso.dmm.set_mode_temperature(type='TYPEK', units='C', sim=23)
Get the DMM's measurement result.
dso.dmm.get_value()

Deactivate the DMM.
if dso.dmm.is_on():

 dso.dmm.set_off()

 MPO-2000 Python Tutorial & Application Handbook

72

Controlling the Built-In DC Power Units

The following examples will demonstrate how to control and

configure voltage and other parameters.

Python code
Import the DSO module and open a socket connection.
import gds_info as gds
dso=gds.Dso()
dso.connect()

Set 5V on channel 1.
dso.power.set_voltage(ch=1, volt=5)

Turn on the power supply.
if not dso.power.is_on():
 dso.power.set_on()

Reconfigure the power supply when OCP occurred on channel 1.
if (dso.power.check_ocp(1)):
 dso.power.clear_ocp(1)

Turn off the power supply.
if dso.power.is_on():

 dso.power.set_off()

 Oscilloscope Library

73

Control Method of GO-NOGO Output Pin

The Go/NoGo function of MPO-2000 features an open-collector

output pin, which can serve as a status indicator for notifying

external circuits when a NoGo violation event occurs. When using it,

this output pin should be connected in series with a pull-up resistor

to an external voltage source. The voltage level of the external

voltage source must consider the voltage range that the connected

external circuit IO pin can withstand.

We also provide Python script control for this output pin. With the

premise that the Go/NoGo output pin is connected to an external

voltage source through a pull-up resistor, you can use

dso.gonogo.output_on() to set the collector electrode to a

conducting state to ground (the Go/NoGo output pin will be at a

low voltage). You can use dso.gonogo.output_off() to set the

collector electrode to a non-conducting state to ground (the

Go/NoGo output pin will be at a high voltage from the external

voltage source). You can also use dso.gonogo.is_output_on() to

query the current configuration status. Please refer to the following

example.

Python code
Import the DSO module and open a socket connection.
import gds_info as gds
dso=gds.Dso()
dso.connect()

Turn on the output.
if not dso.gonogo.is_output_on():
 dso.gonogo.output_on()

Turn off the output.
if dso.gonogo.is_output_on():

 dso.gonogo.output_off()

 MPO-2000 Python Tutorial & Application Handbook

74

Control of Connected External Devices

This oscilloscope can control external devices through a network

interface via socket connection, such as GWInstek's PSW、PFR、

PPX、PEL and other series of devices. It can also communicate with

the aforementioned devices via the USB host interface, which

supports the USB CDC-ACM protocol. When communicating with

external devices, it's important to note that the transmission of

commands and data may take some time. It's advisable to add brief

delays between commands to ensure that the external devices

receive the commands and execute the corresponding actions, which

can enhance the stability of the system.

Control of connected external devices is achieved based on SCPI

commands. Currently, only common commands for some devices

are provided. Users can refer to the Programming Manual of their

devices to find SCPI commands for various functions. In cases where

Python modules do not provide specific commands, users can use

the write() function to send SCPI commands to the device, and the

query() function can be used to read the responses to inquiries.

Simple Method for Connecting External USB
Devices .. 75

Using the PSW Module .. 75
Control External Devices with SCPI Commands 76

Further Learning with the Serial Module 77
Get External Device Model and Serial Number 77
Connect to External Devices via USB CDC-ACM Protocol .. 79
Connected to External Devices via the RS232 Interface. 81
Connecting Multiple External Devices of Different Models .. 83
Connecting Multiple External Devices of the Same Model..... 85

 Control of Connected External Devices

75

Simple Method for Connecting External USB

Devices

Using the PSW Module

The use of the psw module enables easy connection to power

supplies supporting the USB CDC-ACM protocol, and this module

is compatible with devices from the PSW、PFR and PPX series.

Python code
import psw
PSW_SN = 'GEW192100'# Device serial number

if __name__ == '__main__':
 inst = psw.Psw()
 inst.connect(PSW_SN)
 print(inst.idn())

 inst.set_on()
 print(inst.is_on())
 inst.set_off()

inst.close()

Output

GW-INSTEK,PSW160-14.4,GEW192100,02.53.20220419
True

 MPO-2000 Python Tutorial & Application Handbook

76

Control External Devices with SCPI Commands

The psw module does not implement control commands for all

functions. Users can control external devices by sending SCPI

commands. Please refer to the Programming Manual of the

respective device for a list of SCPI commands for each function.

Python code
import psw
PSW_SN = 'GEW192100' # Device serial number

if __name__ == '__main__':
 inst = psw.Psw()
 inst.connect(PSW_SN)
 print(inst.query('*idn?'))

 inst.write(':OUTP ON')
 print(inst.query('OUTP?'))
 inst.write(':OUTP OFF')

inst.close()

Output
GW-INSTEK,PSW160-14.4,GEW192100,02.53.20220419
1

 Control of Connected External Devices

77

Further Learning with the Serial Module

Besides using the psw module, users can directly connect external

USB CDC-ACM devices through the serial module, but we need to

know the model and serial number of the connected USB device in

advance. The same method can also be used to control other devices

that support the USB CDC-ACM protocol.

Get External Device Model and Serial Number

If connected using the USB CDC-ACM protocol to an external

device, when the local underlying driver is operating correctly, the

corresponding device filename inside the machine will be ttyACM0

(if there are more than one devices, the numbers will increment

sequentially, such as ttyACM0, ttyACM1, ttyACM2...).

Python code
Import serial
if __name__=='__main__':
 ttystr = '/dev/ttyACM0' # External USB device location
 try:
 acm = serial.Serial(ttystr, baudrate=115200, timeout=3)
 acm.write('*idn?\n')
 str1 = acm.read(100).decode().split(',')
 print(str1)
 except:
 print('Serial Connection Error!')
 sys.exit()

 sys.exit()

Output
'GW-INSTEK', 'PSW160-14.4', 'GEW192100', '02.53.20220419\n']

The ’PSW160-14.4’ is the device model, and ‘GEW192100’ is the

device serial number.

 MPO-2000 Python Tutorial & Application Handbook

78

If you are connecting an external device with an RS232 interface

using an RS232 to USB cable, please note that the baudrate

parameter in the script should be set to match the baud rate setting

of the RS232 interface on the device. The device filename should be

modified to ‘ttyUSB0’.

Python code
import serial
if __name__=='__main__':
 ttystr = '/dev/ttyUSB0' # External USB device location
 try:
 usb = serial.Serial(ttystr, baudrate=115200, timeout=3)
 usb.write('*idn?\n')
 str1 = usb.read(100).decode().split(',')
 print(str1)
 except:
 print('Serial Connection Error!')
 sys.exit()

 sys.exit()

Output

['GWInstek', 'GDM8261A', 'EN121422', '1.01\r\n']

The ‘GDM8261A’ is the device model, and ‘EN121422’ is the device

serial number.

 Control of Connected External Devices

79

Connect to External Devices via USB CDC-ACM Protocol

The following diagram illustrates the connection

After reading the device model, you can connect to PSW using the

following methods.

Python code
import serial
PSW_NAME = 'PSW160-14.4'# Device name
ACM_MAX = '9' # Search device from ACM0 to ACM_MAX

def ACM_Connect(device_name, device_sn=False):
 global acm
 numACMMAX = int(ACM_MAX)
 numACM = 0
 while(True):
 if numACM > numACMMAX:
 print('%s not found!' % (device_name))
 sys.exit()
 ttystr = '/dev/ttyACM' + str(numACM)
 print('Searching...',ttystr)
 try:
 acm = serial.Serial(ttystr, baudrate=115200, timeout=3)
 except:
 print('Serial Connection Error!')
 sys.exit()

 acm.write('*idn?\n')
 str1 = acm.read(100).decode().split(',')
 if len(str1) > 1:
 if device_sn != False:
 if str1[1] == device_name and str1[2] == device_sn:

 MPO-2000 Python Tutorial & Application Handbook

80

 print('Connected with ', str1[1], str1)
 break
 else:
 if str1[1] == device_name:
 print('Connected with ', str1[1], str1)
 break
 numACM += 1
 return acm

if __name__ == '__main__':
 ACM_MAX = '9'# Search device from ACM0 to ACM_MAX
 device = ACM_Connect(PSW_NAME) # Connected with external device

 device.write('*idn?\n')
 str = device.read(100).decode().split(',')
 print(str[1])

Output
Searching... /dev/ttyACM0
Connected with PSW160-14.4 ['GW-INSTEK', 'PSW160-14.4',
'GEW192100', '02.53.20220419\n']
PSW160-14.4

 Control of Connected External Devices

81

Connected to External Devices via the RS232 Interface.

As mentioned in the previous section, devices connected through an

RS232 interface can be used with an RS232 to USB cable. Please

ensure that the baud rate parameter in the script is set to match the

RS232 interface baud rate of the device. Also, modify the device

filename to 'ttyUSB0'. Considering the connection of multiple RS232

devices, here we have a more comprehensive script example, and

the following diagram illustrates the connection:

Python code

import serial
USB_MAX = '9' # Search device from USB0 to USB_MAX
GDM_NAME = 'GDM8261A' # Device name

def USB_Connect(device_name, device_sn=False):
 global usb
 numUSBMAX = int(USB_MAX)
 numUSB = 0
 while(True):
 if numUSB > numUSBMAX:
 print('%s not found!' % (device_name))
 sys.exit()
 ttystr = '/dev/ttyUSB' + str(numUSB)
 print('Searching...',ttystr)
 try:
 usb = serial.Serial(ttystr, baudrate=115200, timeout=3)
 except:
 print('Serial Connection Error!')
 sys.exit()

 MPO-2000 Python Tutorial & Application Handbook

82

 usb.write('*idn?\n')
 str1 = usb.read(100).decode().split(',')
 if len(str1) > 1:
 if device_sn != False:
 if str1[1] == device_name and str1[2] == device_sn:
 print('Connect to', str1[1], str1)
 break
 else:
 if str1[1] == device_name:
 print('Connect to', str1[1], str1)
 break
 numUSB += 1
 return usb

if __name__ == '__main__':
 device = USB_Connect(GDM_NAME) #Connect to Instrument
 device.write('*idn?\n')
 str = device.read(100).decode().split(',')

print(str[1])

Output
Searching... /dev/ttyUSB0
Connect to GDM8261A ['GWInstek', 'GDM8261A', 'EN121422', '1.01\r\n']

GDM8261A

 Control of Connected External Devices

83

Connecting Multiple External Devices of Different Models

The following diagram illustrates the connection.

To connect multiple external devices through a USB hub, it is

necessary to read the model of each device before proceeding with

the connection. When attempting to connect multiple USB devices, it

is also important to note that both the USB hub and each USB device

require power from the oscilloscope's USB host controller. If the

power supplied from the USB host controller reaches a critical level,

it may lead to unstable data transmission in the USB connection.

Python code
import serial
USB_MAX = '9' # Search device from USB0 to USB_MAX
GDM_NAME = 'GDM8261A'# Device name
ACM_MAX = '9' # Search device from ACM0 to ACM_MAX
PSW_NAME = 'PSW160-14.4' # Device name

if __name__ == '__main__':
 GDM = USB_Connect(GDM_NAME) #Connect to Instrument
 PSW = ACM_Connect(PSW_NAME) #Connect to Instrument

 GDM.write('*idn?\n')
 str = GDM.read(100).decode().split(',')
 GDM_str = str[1]

 MPO-2000 Python Tutorial & Application Handbook

84

 PSW.write('*idn?\n')
 str = PSW.read(100).decode().split(',')
 PSW_str = str[1]

print(GDM_str, PSW_str)

Output
Searching... /dev/ttyUSB0
Connect to GDM8261A ['GWInstek', 'GDM8261A', 'EN121422', '1.01\r\n']

Searching... /dev/ttyACM0
Connect to PSW160-14.4 ['GW-INSTEK', 'PSW160-14.4', 'GEW192100',
'02.53.20220419\n']
GDM8261A PSW160-14.4

USB_Connect() function please refer to page 81

ACM_Connect() function please refer to Page 79

 Control of Connected External Devices

85

Connecting Multiple External Devices of the Same Model

The following diagram illustrates the connection.

If multiple devices of the same model are connected, it is also

necessary to determine the serial number of the machine to ensure

that voltage, current, and other configuration commands are sent to

the correct USB device. This avoids confusion in controlling the

target and prevents any power supply errors that could lead to

damage to the test object.

Python code
import serial
ACM_MAX = '9' # Search device from ACM0 to ACM_MAX
PFR_NAME = 'PFR-100M' # Device name
PFR1_SN = 'GER200751' # Device serial number
PFR2_SN = 'GER200718' # Device serial number

if __name__ == '__main__':
 PFR1 = ACM_Connect(PFR_NAME, PFR1_SN) #Connect to Instrument

 PFR2 = ACM_Connect(PFR_NAME, PFR2_SN) #Connect to Instrument

 PFR1.write('*idn?\n')
 str = PFR1.read(100).decode().split(',')
 PFR1_str = str[1]+' '+str[2]

 PFR2.write('*idn?\n')
 str = PFR2.read(100).decode().split(',')
 PFR2_str = str[1]+' '+str[2]

 MPO-2000 Python Tutorial & Application Handbook

86

 print('1. '+PFR1_str)
 print('2. '+PFR2_str)

Output

Searching... /dev/ttyACM0
Searching... /dev/ttyACM1
Connect to PFR-100M ['GW-INSTEK', 'PFR-100M', 'GER200751',

'01.32.20221031\n']
Searching... /dev/ttyACM0
Connect to PFR-100M ['GW-INSTEK', 'PFR-100M', 'GER200718',

'01.32.20221031\n']
1. PFR-100M GER200751
2. PFR-100M GER200718

ACM_Connect() function please refer to page 79

 Graphical User Interface in Python

87

Graphical User Interface in Python

Introduction to LVGL ... 88

LVGL Basic Examples ... 90
LVGL Initialization ... 90
Text Display ... 92
Text Rotation ... 93
Style Configuration.. 95
Displaying PNG Images .. 97
Simple Line Chart .. 99
Line Charts and Scales .. 101
Text Area .. 103
Table .. 106
Buttons and Switches .. 108
Progress Bars and Sliders ... 111

DSO Drawing Module .. 114
Text and Styles ... 115
Font .. 116
PNG Images ... 118
Line Chart ... 119

 MPO-2000 Python Tutorial & Application Handbook

88

Introduction to LVGL

LVGL (Light and Versatile Graphics Library) is a free and open-

source graphics library licensed under the MIT license. It provides a

variety of user interface components for easy interface design, such

as buttons, labels, images, lists, charts, text areas, and more. It also

offers various event handling mechanisms, including mouse clicks

and drag-and-drop processing, keyboard input, and more. This

makes it convenient for users to create intuitive graphical interfaces,

and it can run on various embedded platforms. We have ported

LVGL to the MPO-2000 system, allowing users to construct their

own test charts and user interfaces under the control of Python

scripts. Please note that graphical user interface script development

is only available on MPO-2000P, and it is not possible to develop this

type of script on the Basic version.

Several key core elements of LVGL include:

1. Objects

LVGL provides various objects such as buttons, labels, lists, input

fields, and more. These objects can be placed on the screen and

interacted with by users. Each object has its own attributes and

methods that can be customized as needed.

2. Graphic Styles

Graphic styles define the appearance and behavior of graphic

elements, including colors, fonts, borders, and more. Developers

can easily change their visual effects.

 Graphical User Interface in Python

89

3. Event Handling

LVGL provides an event handling mechanism. When users

interact with objects, such as pressing a button, the

corresponding events are triggered. Developers can write event

handlers to respond to these events.

Regarding Python script design for MPO-2000, invoking the LVGL

library falls under advanced usage. Users with general scripting

skills can practice by attempting to modify the sample scripts we

provide, extensively reading relevant Python literature, and

conducting practical exercises to enhance their design abilities. For

the actual construction of small-scale automated testing systems, it is

recommended to involve skilled software engineers with expertise

in Python. Using the LVGL library involves a certain level of

complexity, and the graphical interface consumes a significant

amount of memory. To ensure long-term stability and prevent

memory leaks during script execution, it is essential to avoid

continuous memory leaks that can lead to errors or crashes.

 MPO-2000 Python Tutorial & Application Handbook

90

LVGL Basic Examples

Next, we will illustrate how to use LVGL for graphical interface

scripting by providing a few simple examples that demonstrate the

presentation of commonly used text, images, and charts.

Please note that, after calling the GUI library to draw graphs or text,

you need to allow the system a brief moment to complete the screen

update. This is important for short scripts that only draw once and

then exit, where you can add a time.sleep(0.1) delay after the script

drawing. Otherwise, it's possible that the screen updates halfway

and the script stops running.

LVGL Initialization

Before performing any drawing operations, it is necessary to

initialize LVGL and the display screen. This includes initializing

LVGL, the framebuffer, setting up the display buffer, and registering

the display driver.

Subsequent examples will omit this initialization segment!

Python code
import lvgl as lv
import fb

if __name__ == '__main__':

#################################
GUI Initialization #
#################################

Initialize LVGL and Framebuffer

 Graphical User Interface in Python

91

 lv.init()
 fb.init()

 # Set screen width and height
 screen_width = 800
 screen_height = 480

 # Create the display buffer
 disp_buf = lv.disp_draw_buf_t()

 # Set the size of the display buffer
 buf = bytes(screen_width*screen_height*3)

 # Initialize the display buffer in 32-bit units
 disp_buf.init(buf, None, len(buf)//4)

 # Register FB display driver
 disp_drv = lv.disp_drv_t()
 disp_drv.init()
 disp_drv.draw_buf = disp_buf
 disp_drv.flush_cb = fb.flush
 disp_drv.hor_res = screen_width
 disp_drv.ver_res = screen_height
 disp_drv.register()

 Note: If there are any display anomalies, you can try connecting to

the oscilloscope before initiating the drawing.

Python code
import gds_info as gds
dso = gds.Dso()
dso.connect()

 MPO-2000 Python Tutorial & Application Handbook

92

Text Display

In this example, we will demonstrate how to display the text string

‘Hello World’ on the screen.

(LVGL_HelloWorld.py)
Python code

import lvgl as lv
import fb
import time

if __name__ == '__main__':

 #################################

GUI Initialization #
#################################

 # Please refer to LVGL Initialization
 #################################

Hello World #
#################################

 # Create a label object
 label = lv.label(lv.scr_act())

 # Set the position of the label
 label.set_pos(360, 220)

 # Set the text of the label
 label.set_text('Hello World')

time.sleep(0.1)

 Graphical User Interface in Python

93

Text Rotation

In this example, we will demonstrate how to rotate a string and set

its rotation angle.

(LVGL_TextRotation.py)

Python code
import lvgl as lv
import fb
import time

if __name__ == '__main__':

 #################################

GUI Initialization #
#################################

 # Please refer to LVGL Initialization

 #################################

Set the Text #
#################################

 # Create a label object
 label = lv.label(lv.scr_act())

 # Set the position of the label
 label.set_pos(400, 200)

 MPO-2000 Python Tutorial & Application Handbook

94

 # Set the text of the label
 label.set_text('Hello World')

 #################################

Text Rotation #
#################################

 # Set rotation angle to 90 degree
 label.set_style_transform_angle(900, lv.PART.MAIN)

 time.sleep(0.1)

 Graphical User Interface in Python

95

Style Configuration

In this example, we will demonstrate how to change the background

and text colors. All color settings should be entered in hexadecimal

representation (RGB color codes). You can also import the

dso_colors module to use the basic colors we provide, for instance:

Python code

import dso_colors as color
style.set_bg_color(color.BLACK)

(LVGL_Style.py)

Python code
import lvgl as lv
import fb
import time

if __name__ == '__main__':

 #################################

GUI Initialization #
#################################

 # Please refer to LVGL Initialization
 #################################

Create a style #
#################################

 MPO-2000 Python Tutorial & Application Handbook

96

 # Get the active screen object
 obj = lv.scr_act()

 # Create a style for the screen
 style = lv.style_t()
 style.init()
 obj.add_style(style, 0)

 # Set the background color of the style
 style.set_bg_color(lv.color_hex(0x000000))

 #################################

Create a label #
#################################

 # Create a label object
 label = lv.label(lv.scr_act())

 # Set the position of the label
 label.set_pos(360, 220)

 # Set the text color of the label
 label.set_style_text_color(lv.color_hex(0x00FFFF), lv.STATE.DEFAULT)

 # Set the text of the label
 label.set_text('Hello World')
 time.sleep(0.1)

 Graphical User Interface in Python

97

Displaying PNG Images

In this example, we will demonstrate how to read a PNG file and

display it on the screen.

(LVGL_Image.py)

Python code
import lvgl as lv
import fb
import os
import sys

if __name__ == '__main__':

 #################################

GUI Initialization #
#################################

 # Please refer to LVGL Initialization

 #################################

Displaying Image #
#################################

 # Set the background color
 obj = lv.scr_act()
 style = lv.style_t()
 style.init()

 MPO-2000 Python Tutorial & Application Handbook

98

 obj.add_style(style, 0)
 style.set_bg_color(lv.color_hex(0x000000))

 # Set the current working directory to the directory where the script is located

 os.chdir(sys.path[0])

 # Read the image file and display it on the screen
 with open(LVGL_Image.png','rb') as f:
 # Read the PNG data from the file
 png_data = f.read()

 # Create an image descriptor
 png_img_dsc = lv.img_dsc_t({
 'data_size': len(png_data),
 'data': png_data
 })

 # Create an image object and set the image
 img = lv.img(lv.scr_act())
 img.align(lv.ALIGN.CENTER, 0, 0)
 img.set_src(png_img_dsc)

 # Process LVGL tasks
 while True:
 lv.task_handler()

 Graphical User Interface in Python

99

Simple Line Chart

Due to the increased memory consumption when invoking the

graphics library for drawing, currently, the system can draw a

maximum of 50,000 data points in a line chart. If the data volume

exceeds this limit, it can be drawn by selecting specific data points or

averaging multiple sampling points before plotting. In this example,

we will demonstrate how to draw a simple line chart.

 MPO-2000 Python Tutorial & Application Handbook

100

(LVGL_Chart.py)

Python code
import lvgl as lv
import fb
import time

if __name__ == '__main__':

 #################################

GUI Initialization #
#################################
Please refer to LVGL Initialization

 #################################

Draw a Chart #
#################################

 # Create a chart
 chart = lv.chart(lv.scr_act())
 chart.set_size(400,300)
 chart.align(lv.ALIGN.CENTER,0,0)
 chart.set_type(lv.chart.TYPE.LINE)

 # Add data series
 ser=chart.add_series(lv.color_hex(0xFF0000), lv.chart.AXIS.PRIMARY_Y)

 # Set the number of points, default is 10
 chart.set_point_count(3)

 # Set points on ser
 ser.y_points = [25, 75, 50]

 # Update the chart
 chart.refresh()
 time.sleep(0.1)

 Graphical User Interface in Python

101

Line Charts and Scales

In this example, we will demonstrate how to add scales and titles to

a line chart, and explain the parameter definitions of the scale

functions.

(LVGL_ChartTick.py)

Python code
import lvgl as lv
import fb
import time

if __name__ == '__main__':

 #################################

GUI Initialization #
#################################

 # Please refer to LVGL Initialization
 #################################

Create a Chart #
#################################

 # create a chart and set points
 chart = lv.chart(lv.scr_act())
 chart.set_size(400,300)
 chart.align(lv.ALIGN.CENTER,0,0)
 chart.set_type(lv.chart.TYPE.LINE)
 ser=chart.add_series(lv.color_hex(0xFF0000), lv.chart.AXIS.PRIMARY_Y)

 MPO-2000 Python Tutorial & Application Handbook

102

 ser.y_points = [30, 44, 26, 78, 24, 75, 22, 34, 13, 75]
 #################################

Set the ticks and texts #
#################################

chart.set_axis_tick(

lv.chart.AXIS.PRIMARY_X, #Choose to set the x or y-axis
10, # Set the length of the major tick
5, # Set the length of the minor tick
10, # Set the total number of major ticks on the x-axis
2, # Set the number of intervals between major tick on the x-axis
True, # Set whether to display tick labels
50 # Set the length of the tick label

)

 chart.set_axis_tick(

 lv.chart.AXIS.PRIMARY_Y, #Choose to set the x or y-axis
 10, # Set the length of the major tick
 5, # Set the length of the minor tick
 5, # Set the total number of major ticks on the y-axis
 5, # Set the number of intervals between major tick on the y-axis
 True, # Set whether to display tick labels
 50 # Set the length of the tick label

)

 # Update the chart
 chart.refresh()

 #################################

Chart title #
#################################

 # Create a label object
 label = lv.label(lv.scr_act())

 # Set the position of the label
 label.set_pos(360, 60)

 # Set the text of the label
 label.set_text('Chart Title')
 time.sleep(0.1)

 Graphical User Interface in Python

103

Text Area

In this example, we will demonstrate how to create a text area and

add text to it by clicking on a virtual keyboard with a USB mouse or

using a USB keyboard.

(LVGL_TextArea.py)

Python code
import lvgl as lv
import fb

if __name__ == '__main__':

 #################################

GUI Initialization #
#################################

 # Please refer to LVGL Initialization

 #################################

Text Area #
#################################

 LV_HOR_RES = 780
 LV_VER_RES = 450

 MPO-2000 Python Tutorial & Application Handbook

104

 # Create the text area
 ta = lv.textarea(lv.scr_act())
 ta.set_text("A text in a Text Area")
 ta.set_one_line(False)
 ta.align(lv.ALIGN.OUT_TOP_LEFT, 5, 20)
 ta.set_size(LV_HOR_RES, LV_VER_RES // 2)
 ta.add_state(lv.STATE.FOCUSED) # To be sure the cursor is visible
 ta.set_max_length(10000) # The maximum number of characters

 # Create a label above the text box
 label = lv.label(lv.scr_act())
 label.set_text("Text Area")
 label.align(lv.ALIGN.OUT_TOP_LEFT, 5, 0)

 # Create a keyboard
 kb = lv.keyboard(lv.scr_act())
 kb.set_size(LV_HOR_RES, LV_VER_RES // 2)
 kb.align(lv.ALIGN.OUT_TOP_LEFT, 5, LV_VER_RES // 2 + 20)
 kb.set_textarea(ta)

 #################################

Mouse Device #
#################################

 # Registering a mouse input device
 import evdev
 indev_mouse = lv.indev_drv_t()
 indev_mouse.init()
 indev_mouse.type = lv.INDEV_TYPE.POINTER
 indev_mouse.read_cb = evdev.mouse_indev().mouse_read
 indev_mouse.register()

 #################################

Keyboard Device #
#################################

 # Registering a keyboard input device
 import dso_evdev
 indev_kb = lv.indev_drv_t()
 indev_kb.init()
 indev_kb.type = lv.INDEV_TYPE.KEYPAD

 Graphical User Interface in Python

105

 kb_dev = dso_evdev.kb_indev()
 indev_kb.read_cb = kb_dev.kb_read
 indev_kb.register()

 #################################

Keyboard Input Handle #
#################################

 # Read keyboard input and display corresponding text or
 # perform corresponding operations in the textarea
 while True:
 key = kb_dev.get_keycode_mods()
 if key["keycode"]:
 keychar = kb_dev.key_to_char(key['shift'],key['keycode'])
 keyname = kb_dev.get_key_name(key["keycode"])
 if keychar is None:
 if keyname == 'KEY_BACKSPACE':
 lv.textarea.del_char(ta)
 elif keyname == 'KEY_DELETE':
 lv.textarea.del_char_forward(ta)
 elif keyname == 'KEY_UP':
 lv.textarea.cursor_up(ta)
 elif keyname == 'KEY_LEFT':
 lv.textarea.cursor_left(ta)
 elif keyname == 'KEY_RIGHT':
 lv.textarea.cursor_right(ta)
 elif keyname == 'KEY_DOWN':
 lv.textarea.cursor_down(ta)
 else:

lv.textarea.add_text(ta, keychar)

 MPO-2000 Python Tutorial & Application Handbook

106

Table

In this example, we will demonstrate how to create a table.

(LVGL_Table.py)

Python code
import lvgl as lv
import fb
import time

if __name__ == '__main__':
 #################################

GUI Initialization #
#################################

 # Please refer to LVGL Initialization

 #################################

Table #
#################################

 # Set the background color
 obj = lv.scr_act()
 scr_style = lv.style_t()
 scr_style.init()
 obj.add_style(scr_style, 0)
 scr_style.set_bg_color(lv.color_hex(0x000000))

 # Create the table

 Graphical User Interface in Python

107

 table = lv.table(lv.scr_act())
 table.set_col_cnt(3)
 table.set_row_cnt(4)
 table.set_size(480,230)
 table.align(lv.ALIGN.CENTER, 0, 0)

 # Set column widths
 table.set_col_width(0,120)
 table.set_col_width(1,120)
 table.set_col_width(2,120)

 # Set cell values
 table.set_cell_value(0, 0, "Product")
 table.set_cell_value(1, 0, "Quantity")
 table.set_cell_value(2, 0, "Price")
 table.set_cell_value(3, 0, "Total")

 table.set_cell_value(0, 1, "Apple")
 table.set_cell_value(1, 1, "30")
 table.set_cell_value(2, 1, "10")
 table.set_cell_value(3, 1, "300")

 table.set_cell_value(0, 2, "Banana")
 table.set_cell_value(1, 2, "15")
 table.set_cell_value(2, 2, "5")
 table.set_cell_value(3, 2, "75")

 table.set_cell_value(0, 3, "Orange")
 table.set_cell_value(1, 3, "20")
 table.set_cell_value(2, 3, "3")
 table.set_cell_value(3, 3, "60")

 # Apply style to the table
 style = lv.style_t()
 style.init()
 style.set_border_side(lv.BORDER_SIDE.LEFT | lv.BORDER_SIDE.RIGHT |

 lv.BORDER_SIDE.TOP | lv.BORDER_SIDE.BOTTOM)
 style.set_border_color(lv.color_hex(0x000000))
 style.set_bg_color(lv.color_hex(0xFFFFFF))
 table.add_style(style, lv.STATE.DEFAULT | lv.PART.ITEMS)
 time.sleep(0.1)

 MPO-2000 Python Tutorial & Application Handbook

108

Buttons and Switches

In this example, we will demonstrate how to create buttons and

switches, and generate interactive effects by clicking with a USB

mouse.

Here, we will create two different types of buttons: “General” and

“Toggle”. Clicking the Toggle button will produce an effect of

turning it on (orange) and off (blue). The actions of the Toggle and

General buttons are essentially the same, with only a difference in

appearance. Finally, clicking the General button will turn off both

the Toggle button and the Switch. In addition, event handling has

been added to trigger corresponding actions for the buttons. Refer to

the script below to learn how to read or change the button states.

 Graphical User Interface in Python

109

(LVGL_Button.py)

Python code
import lvgl as lv
import fb

if __name__ == '__main__':
 #################################

GUI Initialization #
#################################

 # Please refer to LVGL Initialization

 #################################

Create a Button #
#################################

 def event_handler(evt):
 event_type = evt.get_code()
 target = evt.get_target()
 list_onoff = {True: "On", False: "Off"}

 if event_type == lv.EVENT.CLICKED:
 btn_toggle.clear_state(lv.STATE.CHECKED)

label_btn_toggle.set_text(list_onoff[btn_toggle.has_state(lv.STATE.CHECKED)])
 sw.clear_state(lv.STATE.CHECKED)
 label_sw.set_text(list_onoff[sw.has_state(lv.STATE.CHECKED)])
 elif event_type == lv.EVENT.VALUE_CHANGED:
 if type(target) == type(btn_toggle):
 state = target.has_state(lv.STATE.CHECKED)
 label_btn_toggle.set_text(list_onoff[state])
 elif type(target) == type(sw):
 state = target.has_state(lv.STATE.CHECKED)
 label_sw.set_text(list_onoff[state])

 # Create a simple button
 btn_simple = lv.btn(lv.scr_act())
 btn_simple.add_event_cb(event_handler, lv.EVENT.CLICKED, None)
 btn_simple.set_height(40)
 btn_simple.set_width(80)
 btn_simple.align(lv.ALIGN.CENTER, 0,-100)
 label_btn_simple = lv.label(btn_simple)
 label_btn_simple.center()

 MPO-2000 Python Tutorial & Application Handbook

110

 label_btn_simple.set_text("Default")

 # Create a toggle button
 btn_toggle = lv.btn(lv.scr_act())
 btn_toggle.add_event_cb(event_handler, lv.EVENT.VALUE_CHANGED, None)

 btn_toggle.add_flag(lv.obj.FLAG.CHECKABLE)
 btn_toggle.set_height(40)
 btn_toggle.set_width(80)
 btn_toggle.align(lv.ALIGN.CENTER, 0, 100)
 label_btn_toggle = lv.label(btn_toggle)
 label_btn_toggle.center()
 label_btn_toggle.set_text("Off")

 # Create a switch
 sw = lv.switch(lv.scr_act())
 sw.add_event_cb(event_handler, lv.EVENT.VALUE_CHANGED, None)
 sw.center()
 label_sw=lv.label(sw)
 label_sw.center()
 label_sw.set_text("Off")

 #################################

Mouse Device #
#################################

 # Registering a mouse input device
 import evdev
 indev_mouse = lv.indev_drv_t()
 indev_mouse.init()
 indev_mouse.type = lv.INDEV_TYPE.POINTER
 indev_mouse.read_cb = evdev.mouse_indev().mouse_read
 indev_mouse.register()

 while True:
 pass

 Graphical User Interface in Python

111

Progress Bars and Sliders

In this example, we will demonstrate how to create a progress bar

and a slider.

We have set up two forms of progress bars, divided into regular and

range progress bars. The regular progress bar is commonly used to

indicate the completion status of a process, while the range progress

bar differs in that it allows you to set the starting position of the

progress bar slider. This is often used to indicate that a process is in

progress.

The slider can be dragged and moved using a USB mouse and also

requires adding event handling procedures to handle the

corresponding actions generated by the sliding.

 MPO-2000 Python Tutorial & Application Handbook

112

(LVGL_Bar.py)

Python code

import lvgl as lv
import fb
import time

if __name__ == '__main__':
 #################################

GUI Initialization #
#################################

 # Please refer to LVGL Initialization

 #################################

Create a Bar #
#################################

 def event_handler(evt):
 event_type = evt.get_code()
 target = evt.get_target()

 if event_type == lv.EVENT.VALUE_CHANGED:
 value = target.get_value()
 label_slider.set_text(str(value))

 # Create a bar
 bar = lv.bar(lv.scr_act())
 bar.set_size(200, 20)
 bar.align(lv.ALIGN.CENTER, 0, 50)
 bar.set_range(0, 100)
 bar.set_value(0, lv.ANIM.OFF)
 bar.set_start_value(0, lv.ANIM.OFF)
 label_bar = lv.label(lv.scr_act())
 label_bar.set_text(str(bar.get_value()))
 label_bar.align(lv.ALIGN.CENTER, bar.get_x_aligned(), bar.get_y_aligned())

 # Create a slider
 slider = lv.slider(lv.scr_act())
 slider.add_event_cb(event_handler, lv.EVENT.VALUE_CHANGED, None)
 slider.set_width(200)
 slider.set_range(0, 100)
 slider.set_value(50, lv.ANIM.OFF)

 Graphical User Interface in Python

113

 slider.align(lv.ALIGN.CENTER,0, -50)
 label_slider = lv.label(lv.scr_act())
 label_slider.set_text(str(slider.get_value()))
 label_slider.align(lv.ALIGN.CENTER, slider.get_x_aligned(), slider.get_y_aligned())

 #################################

Mouse Device #
#################################

 # Registering a mouse input device
 import evdev
 indev_mouse = lv.indev_drv_t()
 indev_mouse.init()
 indev_mouse.type = lv.INDEV_TYPE.POINTER
 indev_mouse.read_cb = evdev.mouse_indev().mouse_read
 indev_mouse.register()

 #################################

Progress Bar #
#################################

 def progress_bar():
 if bar.get_mode() == lv.bar.MODE.NORMAL:
 for value in range(0, 101):
 bar.set_value(value, lv.ANIM.OFF)
 label_bar.set_text(str(bar.get_value()))
 time.sleep(0.02)
 else:
 for value in range(0, 121):
 bar.set_start_value(value-20, lv.ANIM.ON)
 bar.set_value(value, lv.ANIM.ON)
 label_bar.set_text("")
 time.sleep(0.02)
 time.sleep(1)

 while True:
 bar.set_mode(lv.bar.MODE.NORMAL)
 progress_bar()
 bar.set_mode(lv.bar.MODE.RANGE)
 progress_bar()

 MPO-2000 Python Tutorial & Application Handbook

114

DSO Drawing Module

We provide two modules, dso_gui and dso_colors, to make it easier

for users to draw on the oscilloscope display screen using LVGL.

The dso_gui module includes functions on how to draw lines,

curves, rectangles, text, images, and line charts, while the dso_colors

module defines some commonly used colors.

 Graphical User Interface in Python

115

Text and Styles

In this example, after changing the background color, we display

‘Hello World’ text in the center of the screen at four different angles

(0, 90, 180, and 270 degrees) and colors.

(LVGL_gui_drawtext.py)

Python code
import dso_gui
import dso_colors as color

if __name__ == '__main__':
 # Initialize the GUI
 gui = dso_gui.DrawObject()
 gui.set_bg_color(color.BLACK)

 # Draw four "Hello World" labels with different colors and angles
 label1 = gui.draw_text(400, 220, "Hello World", color.LTCYAN)
 label2 = gui.draw_text(400, 220, "Hello World", color.LTRED, 90)
 label3 = gui.draw_text(400, 220, "Hello World", color.YELLOW, 180)

 label4 = gui.draw_text(400, 220, "Hello World", color.LTGREEN, 270)

 MPO-2000 Python Tutorial & Application Handbook

116

Font

The current system defaults to using built-in fonts with 14 different

font sizes: 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36, 40, 44, and 48.

In addition to the built-in fonts, we have also included the Terminus

font with 9 different font sizes: 12, 14, 16, 18, 20, 22, 24, 28, and 32,

available in various weights, and it supports multiple languages.

(Terminus Font is licensed under the SIL Open Font License, Version

1.1)

Due to considerations regarding system resources, CJK fonts are

currently not supported.

In the following examples, we have used built-in fonts of different

sizes and loaded the Terminus font with different weights. As

shown in the above image, the left side represents the system's built-

in fonts, while the right side represents the Terminus font.

 Graphical User Interface in Python

117

(LVGL_gui_font.py)

Python code

import dso_gui
import dso_colors as color
import time

if __name__ == '__main__':
 # Initialize the GUI
 gui = dso_gui.DrawObject()
 gui.set_bg_color(color.BLACK)

 # Set different font sizes using built-in fonts
 for i in range(12, 37, 4):
 font = gui.set_font(i)
 if font:
 label = gui.draw_text(150, 100+(i/4-3)*40, 'Hello', color=color.WHITE,

font=font)

 # Set font for specific languages using Terminus font
 font = gui.set_font(fnt_path='/home/upypr/lv_font/Terminus_24.fnt')
 if font:
 label = gui.draw_text(550, 100, 'Cześć', color=color.WHITE, font=font)
 label = gui.draw_text(550, 140, 'Bonjour', color=color.WHITE, font=font)
 label = gui.draw_text(550, 180, 'Hola', color=color.WHITE, font=font)

 # Set bold font for specific languages using Terminus-Bold font
 font = gui.set_font(fnt_path='/home/upypr/lv_font/TerminusB_24.fnt')
 if font:
 label = gui.draw_text(550, 220, 'Привет', color=color.WHITE, font=font)
 label = gui.draw_text(550, 260, 'Hallo', color=color.WHITE, font=font)
 label = gui.draw_text(550, 300, 'Olá', color=color.WHITE, font=font)
 label = gui.draw_text(550, 340, 'Ciao', color=color.WHITE, font=font)

 time.sleep(0.5)

 MPO-2000 Python Tutorial & Application Handbook

118

PNG Images

In this example, you can easily and quickly display PNG images

once the GUI is initialized.

(LVGL_gui_image.py)

Python code

import os
import sys
import dso_gui

if __name__ == '__main__':
 # Initialize the GUI
 gui = dso_gui.DrawObject()

 # Set the current working directory to the directory where the script is located
 os.chdir(sys.path[0])

 # Display the PNG image on the screen
 gui.draw_png(0, 0, 'LVGL_Image.png')

 Graphical User Interface in Python

119

Line Chart

In this example, the X-axis represents time, while the Y-axis

represents the temperature of Samples A and B. The updating

method for this line chart is to shift the old values to the left and add

the new values to the right.

The chart's size and position can be customized, and the floating-

point numbers for the scales can have up to three decimal places.

 MPO-2000 Python Tutorial & Application Handbook

120

(LVGL_gui_chart.py)

Python code
import dso_gui
import gds_info as gds
import dso_colors as color
import time

if __name__ == '__main__':
 # Initialize the GUI
 gui = dso_gui.DrawObject()
 gui.set_bg_color(gds.Theme().bg_color)

 # Create figure object
 fig = gui.Plot(x=120, y=43, width=630, height=350)
 fig.grid(x_major=12, y_major=10, line_color=gds.Theme().grid_color,

bg_color=gds.Theme().bg_color, x_minor=5, y_minor=5)
fig.set_x_axis_on(text_color=gds.Theme().text_color,line_color=gds.Theme().grid_color,
fmt='%d')
fig.set_y_axis_on(text_color=gds.Theme().text_color,line_color=gds.Theme().grid_color,
fmt='%.1f')

 # Add axis labels
 gui.draw_text(400, 440, "Time(h)", gds.Theme().text_color)
 gui.draw_text(30, 300, f"Temperature({chr(176)}C)", gds.Theme().text_color, 270)

 # Add legend
 gui.draw_text(310, 15, "Sample A", gds.Theme().text_color)
 gui.draw_line(270,25,300,25, color.LTGREEN)
 gui.draw_text(460, 15, "Sample B", gds.Theme().text_color)
 gui.draw_line(420,25,450,25, color.YELLOW)

 # Draw data point for Sample A
 valx = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
 valy = [20.0, 23.4, 26.8, 29.5, 33.2, 37.6, 41.2, 45.7, 50.0, 56.1, 62.7, 62.5, 62.8]
 fig.plot(valx, valy, color=color.LTGREEN)

 # Draw data point for Sample B
 valy = [20.0, 26.2, 32.5, 38.3, 45.7, 52.4, 59.3, 67.8, 75.4, 75.1, 75.2, 75.6, 75.3]
 fig.plot(valx, valy, color=color.YELLOW)
 time.sleep(0.1)

 Python Script Editing, Debugging, and Execution

121

Python Script Editing, Debugging,

and Execution
Currently, MPO-2000 only provides simple debugging tools. Users

can connect the PC and MPO-2000 in a local network. By accessing

the internal micro web server of MPO-2000 through a web browser

on the PC, users can perform script editing. Debugging can also be

done using the print() function and the REPL (Read-Eval-Print

Loop) environment.

print() function: This is the simplest debugging method. In the

WebIDE environment, you can insert print() statements into the

script to output the values of variables and other messages, thus

identifying issues in the script. However, when executing Python

scripts either from the Python APP menu or directly from disk or a

USB drive, the output of print() will not be displayed.

REPL: The REPL (Read-Eval-Print Loop) environment allows users

to engage in interactive script design and use the print() function to

output variable values. We can enter a short script in the REPL

environment, immediately view its execution result, and make

necessary modifications.

Editing Using a Web Editor via Ethernet Connection122
WebIDE Startup... 122
Instructions for WebIDE Operations .. 126
Example of Operating Procedures .. 135

Editing Using the Simple Editor on the Machine 139
Operation Procedure ... 139
Operating Instructions .. 141

 MPO-2000 Python Tutorial & Application Handbook

122

Editing Using a Web Editor via Ethernet
Connection

WebIDE

WebIDE is a web-based Python script debugging tool provided by

MPO-2000, which integrates functions such as file management, text

editor, and REPL terminal. Through WebIDE, users can edit and

execute Python scripts within MPO-2000 on the same local network

from their PCs, smartphones, or tablets, or quickly test Python

scripts in the REPL terminal.

(This feature is an extension based on the architecture of

github.com/vsolina/micropython-web-editor, which is a MIT

licensed open-source project. And its author is Vsolina).

WebIDE Startup

In the following operations, we will use a web browser on a PC as

an example for illustration.

1. The Connection of PC and this Machines

First, please ensure that the machine is connected to a valid local

area network (LAN). Users can configure the network settings in

Utility -> I/O -> Network -> Ethernet. Please assign a valid IP

address (Instrument IP Address) to the machine. This IP address

should be on the same LAN as the device where you open the

browser, or you can use DHCP to obtain it automatically.

If you are not in a LAN environment, you can try another

connection method. Connect the MPO-2000 directly to the device

https://github.com/vsolina/micropython-web-editor/tree/master

 Python Script Editing, Debugging, and Execution

123

where you want to open the browser using an Ethernet cable.

Users can check and configure the machine's IP address

(Instrument IP Address) in Utility -> I/O -> Network -> Ethernet.

2. Configure the port

The URL of the WebIDE is composed of the machine's IP and

port number, with the port setting stored in the web_ide app's

configuration file, defaulting to 10180. To modify the port value,

you can connect a USB keyboard to the machine and directly edit

the configuration file using the built-in editor. Please follow these

steps: Click the machine's Python APP menu (“μPy/Exit” purple

button), turn the knob to select web_ide, click Edit Python APP

Config in the bottom row menu, then click Edit on the right-hand

menu to access and edit the configuration file (range: 1025 ~

31025). After editing, remember to save your changes. Please note

that this port setting here should be different from the port used

by the Socket Server to avoid any errors.

 MPO-2000 Python Tutorial & Application Handbook

124

 Python Script Editing, Debugging, and Execution

125

3. Run the APP and access the WebIDE page

Enter the Python APP menu on the machine (“μPy/Exit” purple

button), turn the knob and select web_ide APP. Upon successful

execution, the menu will close, and a μPy icon will appear in the

upper left corner of the screen, indicating that a Python script is

running. A prompt for the IP address will also appear (while

WebIDE is connecting, all buttons on the machine except

“μPy/Exit” will be non-operational). Afterward, open a web

browser and enter the machine's IP address and port in the

address bar, such as ‘172.16.5.234:10180’, to access the WebIDE

page.

 MPO-2000 Python Tutorial & Application Handbook

126

Instructions for WebIDE Operations

The WebIDE page is mainly composed of three sections: file

management menu, text editor, and REPL terminal.

a. File Management Menu:

This area displays the machine-side folder paths and their internal

files available for user operation. Users can manage the storage of

files in each folder. Currently, the locations available for users to use

are Disk (internal storage of the instrument) and external USB drive

on MPO-2000.

The File Management Menu, as shown in the figure, can be divided

into three categories: Title Components, Functional Components,

and Object Lists, explained as follows:

 Python Script Editing, Debugging, and Execution

127

1. Title Components

Represented by small icons, these titles

indicate whether they represent folders or file

documents. The title will display the path

location of the current menu list or the name of

the file being edited.

2. Functional Components

Includes various management actions for files

and paths, such as create, delete, upload,

download, and save for the currently edited

file. It also includes an interface adjustment

menu for opening the WebIDE.

3. Object List

Displays the folders and files currently present

in the path. Clicking on a folder object will

enter that folder and update the display of

titles and object lists. Clicking on a file object

will display the file's content in the text editor

and update the title display. Users can

subsequently edit, save, and perform other

operations on the file in the editor.

 Note
WebIDE currently only supports text-type files, such
as .py, .txt, .csv, .json, etc.

 MPO-2000 Python Tutorial & Application Handbook

128

For example, in the left image, the path title indicates the current

location is Disk/ the file title indicates that the currently edited file is

idn.py and within the current location Disk/ there is a folder named

proj_1 and two files, idn.py and send_line.py.

We also provide basic file management functions, as explained

below:

 New folder

Create a new folder. Clicking this function will bring up a dialog

box where you can enter a name and create it after confirming.

 Remove folder

Delete the current folder (based on the path title). Clicking this

function will bring up a dialog box, and after confirming, it will

delete the folder along with its subfolders and files.

 New file

Create a new file. Clicking this function will bring up a dialog box

where you can enter a name and create it after confirming. (If no

file extension is included in the name, a .py file will be created by

default.)

 Remove file

Delete the currently selected file (based on the file title). Clicking

this function will bring up a dialog box, and after confirming, it

will delete the file.

 Upload

Upload a file. Clicking this function will open a device file

selection dialog, allowing you to choose a file from your device

and upload it to the current folder on the machine.

 Python Script Editing, Debugging, and Execution

129

 Download

Download a file. Clicking this function will initiate the download

of the currently selected file. After a successful download, a

device path dialog will appear to choose the storage location on

your PC.

 Save File

Save the currently selected file.

 Settings

Open the settings dialog, where you can adjust font size for the

editor and REPL terminal. You can also choose the layout to be

displayed in the WebIDE.

 MPO-2000 Python Tutorial & Application Handbook

130

b. Text Editor:

WebIDE uses the embedded Ace (Ajax.org Cloud9 Editor) as a text

editor, supporting practical features such as keyword search, copy-

paste, automatic suggestions for defined terms, color-coding based

on script language attributes, and automatic highlighting of identical

terms.

Common shortcuts:

 [Ctrl]+[S]

Save the currently selected file.

 [Ctrl]+wheel

Adjust the font size of the editor.

 [Ctrl]+[F]

Search for a word.

 [Ctrl]+[A]

Select all content within the editor.

 [Ctrl]+[C]

Copy the selected content.

 [Ctrl]+[V]

Paste the copied content.

 [F1]

View the editor shortcut command list.

 Python Script Editing, Debugging, and Execution

131

c. REPL Terminal:

The REPL terminal allows direct interaction with the built-in Python

interpreter on the machine. Users input script fragments here and

receive immediate responses from the interpreter. Any errors are

also displayed instantly, making it convenient for manual testing of

Python scripts. When the 'Run' button is used to execute the file

being edited, the execution results and error information will also be

displayed here.

REPL terminal shortcut:

 [Ctrl]+wheel

Adjust the font size within the REPL terminal.

 [Ctrl]+[D]

Terminate the REPL Terminal.

 [Ctrl]+[E]

Enter text paste mode, where you can paste multi-line scripts and

execute them all at once. After entering this mode, paste the

script, press [Ctrl]+[D] to execute, or press [Ctrl]+[C] to cancel

and exit paste mode.

 [Ctrl]+[A]

Used to unlock the [Ctrl]+[V] paste function in the REPL terminal.

To paste text that has been copied into the REPL terminal, you

must first press [Ctrl]+[A], and then press [Ctrl]+[V] to paste the

script.

 MPO-2000 Python Tutorial & Application Handbook

132

Differences between paste mode and normal mode:

As an example illustrated in the figure below, in normal mode,

when you copy the script from the left side and paste it into the

right-side terminal, the terminal will execute the line of command as

soon as it encounters a newline character.

When entering paste mode, you can paste multiple lines of

commands at once and then execute them with [Ctrl]+[D]. The

execution information will be consolidated after the script. This is

more suitable for pasting and testing a complete set of functions.

 Python Script Editing, Debugging, and Execution

133

REPL function keys:

 Run

Executes the current selected Python script file in the REPL

terminal. Clicking this button opens a dialog, and upon

confirmation, the machine executes the script. Messages printed

using print() during execution will be displayed in the REPL

terminal. While a file is being executed, this button will appear as

Stop and clicking it will interrupt the current script execution in

the REPL environment.

 Reconnect

Resets the REPL terminal. Clicking this button opens a dialog, and

upon confirmation, it updates the REPL terminal environment

and reconnects. If the REPL terminal appears to be disconnected,

this function can be used to reestablish the connection. It can also

be used to initialize the REPL environment.

 MPO-2000 Python Tutorial & Application Handbook

134

 Clear DSO Screen

In the process of debugging Python scripts that invoke the LVGL

graphics library, you may often encounter situations where you need to

interrupt and exit an ongoing execution. In such cases, you can use this

function key to clear the graphics drawn by LVGL on the MPO-2000

screen. Clicking it will bring up a dialog box, and upon confirmation, the

screen will be cleared.

 Python Script Editing, Debugging, and Execution

135

Example of Operating Procedures

Example 1

Creating a Python file, running it to print “Hello World”, and

machine information such as model and serial number.

Step 1

Navigate to the disk path and click on New file to create a new file

named hello_world.py.

Step 2

Enter the Python script as shown in the figure below into

hello_world.py. After saving, click Run and the REPL terminal will

execute the script and display the results.

 MPO-2000 Python Tutorial & Application Handbook

136

Example 2

Creating a Folder, creating a main script file and module file inside

the folder, running the main script file to call a function from the

module file and print the result. Here, we demonstrate that files

within the same folder can reference each other, allowing users to

design their own libraries for use.

Step 1

Navigate to the Disk path and click New folder to create a new folder named

proj_1.

 Python Script Editing, Debugging, and Execution

137

Step 2

Enter the proj_1 path, click on New file to create two new files, main.py and

func.py.

Step 3

Edit func.py and input mathematical operation functions. You can

also paste the functions into the REPL terminal for testing.

 MPO-2000 Python Tutorial & Application Handbook

138

Step 4

Edit main.py and reference func.py within the script to use the

functions defined in func.py. After inputting the script and saving it,

click Run to view the execution results.

 Python Script Editing, Debugging, and Execution

139

Editing Using the Simple Editor on the

Machine

We can connect a USB keyboard to the machine and directly edit .py

and .txt files stored inside the machine.

Operation Procedure

Please prepare a USB keyboard that complies with the USB HID

protocol and follow the steps below.

Step 1

Insert the USB keyboard into the USB host port on the MPO-2000

panel, and access the Python APP menu. Click on the User Python

Edit/Run button in the bottom right corner to enter the function

menu, then select the Edit function.

 MPO-2000 Python Tutorial & Application Handbook

140

Step 2

Click on the Edit function in the right-side menu and select the file

you want to edit from the file list (a .py or .txt file).

 Python Script Editing, Debugging, and Execution

141

Operating Instructions

The operation of this editor is the same as commonly used text

editors. In addition to inputting English words and symbols, it also

supports functions such as [Backspace] for deleting text, [Capslock]

for toggling between uppercase and lowercase, and [Shift]+letter for

quickly toggling input case. You can easily modify the contents of a

text file and save it. In addition, there are the following commonly

used keyboard function keys:

 [Tab]

Input 4 spaces.

 [Ctrl]+[S]

Save the text file and exit the editor.

 [Esc]

Exit the editor.

 MPO-2000 Python Tutorial & Application Handbook

142

Built-in Python APP and its

Measurement Applications Guide

In this section, we will explain the operational principles of each

built-in Python APP, along with the circuits, measurement methods,

and script design considerations required to support their respective

measurements. On the menu page, individual Python scripts can be

copied to a USB flash drive for users’ convenience in viewing or

modifying them on a PC. For some apps, we provide parameter

configuration files that are loaded during script execution. The

purpose is to extend the applicability of the app by modifying

parameters without altering the Python script. For example,

different BJT components require different Ib and Vcc settings

during measurement, and the configuration of horizontal and

vertical ranges may also vary. By simply modifying the parameters,

the app can be adapted to test a wider range of components.

If you have manually installed third-party Python application

scripts (.xpy files) in the Python APP, due to our intellectual

property protection mechanisms designed for third-party apps, the

Python scripts cannot be copied out.

 Built-in Python APP and its Measurement Applications
Guide

143

The built-in Python APP application scripts in MPO-2000 include

the following categories:

 BJT Output Characteristics Curve

 LC Oscillator Circuit Frequency vs. Temperature Characteristics

Curve

 Fuse Endurance Test

 LED Forward Bias Voltage Characteristics Curve

 Barcode Scanner Measurement Applications

BJT Output Characteristics Curve 145
Preparations ... 146
Precautions .. 149
File Usage Description .. 152
Execution Steps .. 152
Python Script Workflow ... 153
Characteristics Curve of the Device Under Test 154
Test Results ... 155

BJT Output Characteristic Curves (Using External DC
Power Supply) .. 156

Preparations ... 156
Precautions .. 158
File Usage Description .. 158
Execution Steps .. 158
Python Script Workflow ... 159
Characteristics Curve of the Device Under Test 160
Test Results ... 160

LC Oscillator Circuit Temperature vs. Frequency
Characteristics Curve .. 161

Preparations ... 163
Precautions .. 165
File Usage Description .. 166
Execution Steps .. 166
Python Script Workflow ... 167
Test Results ... 168

Fuse Endurance Test ... 169
File Usage Description .. 171

 MPO-2000 Python Tutorial & Application Handbook

144

Execution Steps ... 171
Python Script Workflow... 172
Test Results ... 172

LED Forward Bias Voltage Characteristics Curve 173
Preparations .. 174
Precautions ... 175
File Usage Description ... 175
Execution Steps ... 176
Python Script Workflow... 176
Test Results ... 177

LED Forward Bias Voltage Characteristics Curve (Using
External Power Supply and Digital Multimeter) 178

Preparations .. 178
Precautions ... 179
File Usage Description ... 179
Execution Steps ... 180
Python Script Workflow... 180
Test Results ... 181

Barcode Scanner Measurement Application 182
Preparations .. 183
Precautions ... 184
File Usage Description ... 184
Execution Steps ... 184
Python Script Workflow... 185
Test Results ... 186

 Built-in Python APP and its Measurement Applications
Guide

145

BJT Output Characteristics Curve

BJT (Bipolar Junction Transistor) is a common electronic component,

and characteristic curve testing is one of the methods for evaluating

its operating range and performance. By setting the BJT at different

bias states and measuring the relationship between the output

current waveform and the output voltage waveform, BJT's I-V

characteristic curve can be plotted. Through characteristic curve

measurements, the BJT's operating region can be determined, thus

establishing the optimal operating point and evaluating the BJT's

performance, parameters, and stability.

We provide two methods for plotting I-V characteristic curves in BJT

characteristic curve measurements: using the XY mode of an

oscilloscope and using a Python graphic library. The Python script

essentially controls Ib, Vcc, and the sampling in the same way.

bjt char curve APP:

In this script, we utilize the XY mode of the oscilloscope to display

the I-V characteristic curve. After setting the DC voltage of Vbb each

time, the waveform is triggered as V1 rises from 0V to the set

voltage. The superimposed waveforms of multiple triggers on the

screen can represent the I-V characteristic curves under various Ib

conditions.

 MPO-2000 Python Tutorial & Application Handbook

146

bjt char curve pro APP:

In this script, we use a GUI library to plot two sets of sampled

waveform data (voltage and current in pairs) on a coordinate plane,

with horizontal and vertical axis scales. By overlaying waveforms

triggered multiple times, you can obtain the I-V characteristic curves

under various Ib conditions on the screen. Before actually executing

this script, please ensure the horizontal range is appropriate in the

bjt char curve APP, and that both CH1 and CH2 vertical ranges are

suitable, and that the waveform upper and lower parts do not

exceed the screen boundaries.

Preparations

For current measurement, we use a differential probe to measure the

voltage difference across both ends of Rc, and then divide it by the

resistance value of Rc to obtain it. In the measurement process of this

characteristic curve, the first half requires manual adjustment of the

resistance value of Rb. After confirming Rb, manually adjust the DC

output V2 and record the voltage values required for different Ib,

which will be sequentially output by the Python script.

Please connect each test lead and probe as listed below:

1. Connect the positive terminal of the DC power supply output1

on MPO-2000 to the V1 (Vcc) terminal of the circuit as shown in

the figure, and connect the positive terminal of output2 to the V2

(Vbb) terminal.

2. Connect the probe on CH1 of the oscilloscope to the collector to

measure the voltage waveform (Vce).

 Built-in Python APP and its Measurement Applications
Guide

147

3. Connect the differential probe on CH2 of the oscilloscope to both

ends of Rc (V1 and collector) to measure the current waveform

(Ic). Or use a current probe capable of measuring DC current

directly from the output1 (relevant parameters in the

configuration file need to be modified accordingly).

4. Connect the negative terminal of the DC power supply and the

ground terminal of the CH1 probe to the emitter(GND).

In the Python script, we use the voltage waveform as the trigger

source, and the trigger level must be properly set to ensure that the

waveform data is captured each time. After each change in the

voltage at the V2 terminal, the script controls the voltage at the V1

terminal to turn ON and immediately OFF. Capture the sampling

waveforms of CH1 and CH2 during this period to draw the I-V

characteristic curve.

BJT testing circuit and wiring diagram

 MPO-2000 Python Tutorial & Application Handbook

148

BJT demo board wiring diagram

 Built-in Python APP and its Measurement Applications
Guide

149

Precautions

1. Precautions before confirming Vbb voltage and Rb variable

resistor value, do not apply voltage on Vcc.

2. Note that the DC Power Supply of MPO-2000 single-channel

continuous output has a maximum power of 5W.

3. Rb variable resistor adjustment:

 Refer to the transistor specification sheet. Assume the

maximum output of Vbb voltage to be 10V, and the maximum

Ib current to be 10mA. Therefore, choose Rb as 1k ohm.

However, since the minimum unit for adjusting the DC

voltage output of MPO-2000 is 0.1V, to accurately adjust to the

required current, use a 1k ohm variable resistor in this case,

and connect a 200-ohm protective resistor (R1) in series.

 Assuming that when Ib is 1mA and Rb+R1 is 1k ohm, the

voltage at both ends is 1V, and since there is a voltage drop of

approximately 0.7V across Vbe, set the Vbb voltage to 1.7V

initially, and adjust Rb such that the voltage across R1 using a

voltmeter is 200mV (1mA × 200 ohms). Measure the resistance

value of R1 with a DMM in the power-off state to reduce

measurement errors. For example, if the actual measured

resistance value of R1 is 201 ohms, the current Ib through R1

will be 1mA when the voltage at both ends of R1 is 201mV.

4. Vbb voltage value adjustment:

 Adjust the DC voltage output to make the voltage at both

ends of R1 become 400mV (2mA × 200 ohms) to obtain the

voltage value when Ib is 2mA.

 MPO-2000 Python Tutorial & Application Handbook

150

 The remaining Ib current values can all be obtained in the

same way to obtain the corresponding Vbb voltage values.

5. Vcc voltage value and Rc resistor value:

 Referring to the characteristic curve of the transistor

specification sheet, when Ib is 15mA and Vce voltage is 12V,

the Ic current can reach 1.1A. Considering the DC output

capability of MPO-2000, Rc is chosen to be a 2-ohm resistor, at

this time, the Vcc voltage is approximately 14.2V (1.1A × 2

ohms + 12V).

6. Measure and plot the curve using a differential probe:

 When the voltage at both ends of Rc is too small, there may be

problems with unmeasurable or excessive noise.

 As the measurement target is the voltage at both ends of Rc

rather than the Ic current, when converting to current, because

Rc is 2 ohms, the probe ratio can be adjusted to divide by 2;

for example, if the probe ratio is x20, then adjust it to x10,

which can correspond to the current scale. The selection of Rc

is related to the magnitude of Ic and the attenuation ratio of

the probe. If it is not possible to correspond to the correct

attenuation ratio, it will not be possible to correspond to the

scale correctly in XY mode.

 Built-in Python APP and its Measurement Applications
Guide

151

 In the bjt char curve APP, we use the XY mode to display the

I-V characteristic curve. However, if the selected Rc resistance

value is not exactly 2 ohms but 2.1 ohms, because the

attenuation ratio can only be specific integers, the

characteristic curve presented at this time will have an

additional 5% error on the vertical axis.

 In the bjt char curve pro APP, the above error of the Rc

resistor can be pre-measured using a DMM to obtain its

accurate resistance value and then substitute it into the

formula I=V/R to calculate the correct current value. Then use

the Python graphic library to draw the I-V characteristic

curve, thus providing more accurate measurement results.

7. The supply time to Vcc must be kept as short as possible;

otherwise, the internal temperature of the components may

become significantly higher than the external temperature,

resulting in measurement errors. Components like SiC and

GaN can endure extremely short conduction times; please

refer to the component's specification sheet. Excessive

conduction time may lead to component damage, so special

attention is required.

 MPO-2000 Python Tutorial & Application Handbook

152

File Usage Description

bjt char curve APP:

bjt_char_curve.py: Python script file
bjt_char_curve.txt: parameter configuration file

bjt char curve pro APP:

bjt_char_curve_pro.py: Python script file

bjt_char_curve_pro.txt: parameter configuration file

Execution Steps

1. Modify the parameters in the parameter configuration file

according to different requirements, such as the actual measured

value of Rc, Vcc voltage, Vbb voltage, and trigger threshold.

2. Execute the Python script.

 Built-in Python APP and its Measurement Applications
Guide

153

Python Script Workflow

bjt char curve APP:

1. Load parameter configuration file.

2. Perform initial settings for MPO-2000.

3. Set the two sets of DC voltages for MPO-2000, turn on Output 2,

turn on output 1 and immediately turn off output 1 (power-on

time is approximately 10ms).

4. Repeat step 3 and 4 according to the number of tests.

bjt char curve APP:

1. Load parameter configuration file.

2. Perform initial settings for MPO-2000.

3. Set the two sets of DC voltages for MPO-2000, turn on Output 2,

turn on output 1 and immediately turn it off(power-on time is

approximately 10ms).

4. Use Python graphics library to draw a curve on the screen.

5. Repeat step 3, 4, and 5 according to the number of test

repetitions.

 MPO-2000 Python Tutorial & Application Handbook

154

Characteristics Curve of the Device Under Test

The transistor used in the circuit under test is TTC004B, and its I-V

characteristic curve is shown in the figure below:

The I-V characteristic curve of TTC004B.

 Built-in Python APP and its Measurement Applications
Guide

155

Test Results

The output screen of bjt char curve APP

The output screen of bjt char curve pro APP

The bjt char curve APP and bjt char curve pro APP can both run on

the Basic and Professional versions of MPO-2000. However, the

Python source code modified from the bjt char curve pro cannot be

executed on the Basic version of MPO-2000, as the Python scripts

invoking the graphic library can only run on the Professional

version of MPO-2000.

 MPO-2000 Python Tutorial & Application Handbook

156

BJT Output Characteristic Curves (Using

External DC Power Supply)

In the bjt char curve pwr pro APP, we use an external DC power

supply (PPX) to power the device under test. The Python script

sends remote control commands to the PPX power supply via a USB

interface using the USB CDC-ACM protocol, replacing the portion in

the bjt char curve pro script that uses the built-in DC power supply.

Therefore, when performing the same BJT output characteristic

curve test, it is possible to test at higher voltages and currents.

Except for the initial connection establishment procedure with PPX,

the rest of the testing procedure is generally the same as the bjt char

curve pro APP.

Preparations

Please refer to the operating instructions on page 146 first; the

testing principle in this section is the same.

1. Prepare a USB 2.0 USB Hub and connect its device port to the

front panel USB slot of MPO-2000.

2. Prepare two PPX DC power suppliers, hereafter referred to as

power1 and power2 (the outputs are referred to as output1 and

output2, respectively). Connect these two devices to the above-

mentioned USB hub using USB cables.

3. Connect the positive terminal output1 to the V1 (Vcc) terminal of

the circuit as shown in the figure, and connect the positive

terminal of output2 to the V2 (Vbb) terminal.

 Built-in Python APP and its Measurement Applications
Guide

157

4. Connect the probe on CH1 of the oscilloscope to the collector to

measure the voltage waveform (Vce)

5. Connect the differential probe on CH2 of the oscilloscope to both

ends of Rc (V1 and collector) to measure the current waveform

(Ic).

6. Connect the negative terminal of the power1 & power2 and the

ground terminal of the CH1 probe to the emitter(GND).

BJT testing circuit and wiring diagram

BJT demo board wiring diagram

 MPO-2000 Python Tutorial & Application Handbook

158

Precautions

1. Please refer to page 148

2. During the initial setup process, it is necessary to establish a

connection with the external power supply through the USB

interface, and the product serial number needs to be verified.

Please modify the serial numbers on the right side of the equal

sign, such as “pwr1ser” and “pwr2ser,” in this APP parameter

configuration file to match the power supply you are connecting.

3. As the remote control commands to the external device require

more time for transmission, special attention should be paid to

the possibility that excessive conduction time may cause an

increase in the temperature of the test object or even lead to

damage.

File Usage Description

bjt_char_curve_pwr_pro.py : Python script file

bjt_char_curve_pwr_pro.txt : parameter configuration file

Execution Steps

1. Modify the parameters in the parameter configuration file

according to different requirements, such as the actual measured

value of Rc, Vcc voltage, Vbb voltage, and trigger threshold.

2. Execute the Python script.

 Built-in Python APP and its Measurement Applications
Guide

159

Python Script Workflow

1. Load parameter configuration file.

2. Perform the initial setup of MPO-2000 and the external power

supply unit.

3. Set the power1/2 voltage, turn on output2, turn on output1, and

then turn it off after a short delay. Note that the supply time

should be as short as possible; otherwise, the internal

temperature of the components may be much higher than the

external temperature, leading to measurement errors. Also, the

conduction time of components such as SiC and GaN should be

as short as possible, as the device under test may overheat or

even be destroyed.

4. Use Python graphic library to plot the curve on the screen.

5. Repeat step 3, 4, and 5 according to the number of tests.

 MPO-2000 Python Tutorial & Application Handbook

160

Characteristics Curve of the Device Under Test

The transistor used in the circuit under test is TTC004B, and its I-V

characteristic curve is shown in the figure below:

-
The I-V characteristic curve of TTC004B.

Test Results

-
The output screen of bjt char curve pwr pro APP

 Built-in Python APP and its Measurement Applications
Guide

161

LC Oscillator Circuit Temperature vs.

Frequency Characteristics Curve

This is an application example that utilizes an oscilloscope and a

digital multimeter (DMM) in collaboration to measure the frequency

vs. temperature characteristics curve of the test object. We use the

oscilloscope to measure the frequency of the oscillating circuit, while

the DMM, along with a K-type thermocouple, measures the

temperature of the test object. Within a certain temperature range, a

Python script continuously monitors the temperature readings from

the DMM and the frequency measurements from the oscilloscope

channel. Here, we take the measurement using an LC resonance

circuit as an example, and connect a cement resistor to a DC power

source of MPO-2000 as a simple heater. The inductor, capacitor, and

K-type thermocouple are all fixed on the cement resistor and coated

with thermal conductive adhesive. The DMM measures the

temperature, while the oscilloscope probe measures the oscillation

frequency, recording the temperature and frequency for every 1-

degree Celsius increase. Here, we classify the power source of the

heater into the following two types of applications.

 MPO-2000 Python Tutorial & Application Handbook

162

LC oscillating APP:

In this script, we utilize the built-in DC power supply of MPO-2000

to output to the cement resistor as a heater, controlling the output

voltage to gradually raise the temperature of the cement resistor

from room temperature to around 50 degrees Celsius. Throughout

the process, the script continuously stores temperature and

frequency measurement values in a .csv file

LC oscillating pro APP:

In this script, we use a cement resistor as a heater with the CC

(constant current) mode output of the PFR power supply,

controlling the output current to gradually raise the temperature of

the cement resistor from room temperature to around 50 degrees

Celsius. Throughout the process, the script continuously stores

temperature and frequency measurement values in a .csv file and

updates the temperature and frequency curves. This test

configuration is suitable for applications that require higher output

(heating) power.

 Built-in Python APP and its Measurement Applications
Guide

163

Preparations

LC oscillating APP:

1. Connect the positive terminal of the power supply 1 of MPO-

2000 to the VDD terminal of the circuit board to provide power

for the operation of the oscillation circuit.

2. Connect the K-type thermocouple to the DMM of MPO-2000.

3. Connect the positive and negative terminals of power supply 2 of

MPO-2000 to both ends of the cement resistor Rc.

4. Connect the oscilloscope probe of CH1 to the TP terminal.

5. Connect the negative terminal of power supply 1 of MPO-2000

and the ground terminal of the CH1 probe to GND.

LC oscillating pro APP:

1. Connect the positive terminal of the power supply 1 of MPO-

2000 to the VDD terminal of the circuit board to provide power

for the operation of the oscillation circuit.

2. Connect the K-type thermocouple to the DMM of MPO-2000.

3. Connect the output of the external power supply (e.g., PFR-

100M) to both terminals of Rc.

4. Connect the oscilloscope probe of CH1 to the TP terminal.

5. Connect the negative terminal of power supply 1 of MPO-2000

and the ground terminal of the CH1 probe to GND.

 MPO-2000 Python Tutorial & Application Handbook

164

-
LC oscillating APP testing circuit and wiring diagram

LC oscillating pro APP testing circuit and wiring diagram

 Built-in Python APP and its Measurement Applications
Guide

165

-

The actual wiring diagram

Precautions

1. The LC oscillating pro script needs to establish a connection with

an external power supply through the USB interface during the

initial setup process, and the product serial number needs to be

verified. Please first modify the serial number on the

"serial_number" on the right side of this APP parameter

configuration file to match the power supply you are connecting

to.

2. Pay attention to the maximum power of Rc and the maximum

continuous output power of the MPO-2000 series DC power

supply single-channel output, which is 5W.

3. Do not let the temperature of the cement resistor rise too quickly,

otherwise the cement resistor is prone to cracking, and there will

be a larger error in the measured temperature.

 MPO-2000 Python Tutorial & Application Handbook

166

File Usage Description

LC oscillating APP:

LC_oscillating.py : Python script file
LC_oscillating.txt : parameter configuration file

LC oscillating pro APP:

LC_oscillating_pro.py : Python script

LC_oscillating_pro.txt : parameter configuration file

Execution Steps

1. Modify the parameters in the parameter configuration file

according to different requirements.

2. Execute the Python script.

 Built-in Python APP and its Measurement Applications
Guide

167

Python Script Workflow

LC oscillating APP:

1. Load parameter configuration file.

2. Perform initial settings for MPO-2000.

3. Set and activate MPO-2000 DSO power supply 2, start heating Rc.

4. Open the .csv file to prepare for storing temperature and

frequency data, then monitor the temperature reading of the

DMM. Save the measured temperature and frequency values to

the .csv file for every 1°C increase. Note: This temperature-

frequency file can be used to draw a curve in Excel.

5. Repeat step 4 and 5 until the temperature reaches 50°C, then stop.

LC oscillating pro APP:

1. Load parameter configuration file.

2. Perform the initial setup for MPO-2000 and external power

supply (e.g., PFR-100M).

3. Configure and activate the external power supply, and

commence heating Rc.

4. Open the .csv file to prepare for storing temperature and

frequency data, then monitor the temperature reading of the

DMM. Save the measured temperature and frequency values to

the .csv file for every 1°C increase.

5. Use Python graphic library to plot a curve on the screen.

6. Repeat 4, 5, and 6 until the temperature rises to 50 degrees

Celsius.

7. Save the screen image as a file.

 MPO-2000 Python Tutorial & Application Handbook

168

Test Results

-
Temperature vs. frequency curve output by LC oscillating pro APP

 Built-in Python APP and its Measurement Applications
Guide

169

Fuse Endurance Test

fuse endurance pro APP is a Python script testing procedure

implemented according to the IEC 60127-1 testing standard. In this

testing application, we need to use an external power supply. The

specific testing content is as follows:

1. Set the constant current mode using an external DC power

supply, allowing the rated current to pass through the test fuse

for one hour and then disconnect for 15 minutes, performing 100

cycles continuously. Finally, pass the test fuse with 125% of the

rated current for one hour.

2. The difference in resistance values before and after the test

should be less than 10%.

 MPO-2000 Python Tutorial & Application Handbook

170

Preparations

1. Connect the output terminals of the external power supply (e.g.,

PFR-100M) to both ends of the fuse.

2. Connect the probe of MPO-2000 (CH1) to both ends of the fuse,

ensuring that the grounding end of the probe is connected to the

negative terminal of the power supply output.

-

Wiring diagram of the fuse endurance pro APP

 Built-in Python APP and its Measurement Applications
Guide

171

Precautions

1. Please pay attention to the rated current of the fuse, the rated

current of the fuse used in this test example is 1A.

2. In this example, we use an oscilloscope channel to measure the

voltage difference across the fuse instead of measuring the

resistance value. Since the DMM offers better voltage

measurement accuracy compared to the oscilloscope, it can be

used for applications that require higher precision to measure the

voltage difference across the fuse.

File Usage Description

fuse_endurance_pro.py: Python script file

fuse_endurance_pro.txt: parameter configuration file

Execution Steps

1. Modify the parameters in the parameter configuration file

according to different requirements.

2. Execute the Python script.

 MPO-2000 Python Tutorial & Application Handbook

172

Python Script Workflow

1. Load parameter configuration file.

2. Perform the initial setup for MPO-2000 and external power

supply (e.g., PFR-100M).

3. Execute the fuse endurance testing script

4. Verify whether the voltage difference before and after the test

procedure has changed by less than 10%.

Test Results

The output screen of fuse endurance pro APP

 Built-in Python APP and its Measurement Applications
Guide

173

LED Forward Bias Voltage Characteristics

Curve

test led pro APP is a script application used to observe the

characteristic curve of the relationship between the forward voltage

and current of an LED. It can be used to observe the cutoff voltage of

the LED, where the LED begins to conduct and emit light when the

forward bias exceeds the cutoff voltage. In this test, we used the

built-in DC power supply of the MPO-2000 to provide the LED with

a forward bias, measured the voltage across the LED using

oscilloscope channel 1, and measured the current passing through

the LED using the built-in DMM.

 MPO-2000 Python Tutorial & Application Handbook

174

Preparations

1. Connect the output of the DC power supply of MPO-2000

(default to channel 1) to the mA probe jack of the DMM for

testing.

2. Connect the COM jack of the DMM to the anode of the LED

using a test lead.

3. Hook the probe of channel 1 of the oscilloscope to the anode of

the LED.

4. Connect the LED cathode to the probe ground and the negative

terminal of the DC power supply on the MPO-2000.

LED testing circuit and wiring diagram

 Built-in Python APP and its Measurement Applications
Guide

175

Precautions

1. Before testing, please confirm the positions of the LED anode

(positive) and cathode (negative) to avoid connecting them

incorrectly and causing damage to the LED.

2. Please pay attention to the applied voltage range in this test to

avoid generating excessive current that may cause the internal

DMM fuse to blow (maximum acceptable current is 600mA,

exceeding 1A will result in a blown fuse).

3. Note that the minimum voltage output of MPO-2000's DC power

supply is 1.0V, and it does not provide overcurrent protection

with adjustable settings. Therefore, avoid using excessively high

test voltages to prevent excessive current that may lead to the

burning of the device under test.

4. When testing high-power LEDs, it may be necessary to modify

the wiring, by switching the test lead from the 'mA' probe jack of

the DMM to the 'A' probe jack, and setting the DMM mode to

DCA mode in the script.

5. Pay attention to the specifications of the LED, and do not exceed

its maximum voltage tolerance.

File Usage Description

test_led_pro.py: Python script file
test_led_pro.txt: parameter configuration file

 MPO-2000 Python Tutorial & Application Handbook

176

Execution Steps

1. Modify the parameters in the parameter configuration file

according to different requirements.

2. Execute the Python script.

Python Script Workflow

1. Load parameter configuration file.

2. Perform initial setup for MPO-2000 oscilloscope, DMM, and DC

power supply.

3. Set the voltage of the DC power supply and enable output.

4. Read the current measurement value from the DMM.

5. Read the voltage measurement value from channel one of the

oscilloscope.

6. Use Python graphic library to draw a curve on the screen.

7. Repeat step 3, 4, 5, and 6 until the specified test count limit.

 Built-in Python APP and its Measurement Applications
Guide

177

Test Results

The output screen of test led pro APP

 MPO-2000 Python Tutorial & Application Handbook

178

LED Forward Bias Voltage Characteristics

Curve (Using External Power Supply and

Digital Multimeter)

In test led external device pro APP, we repeat the test from the

previous section and use an external power supply instead (e.g.,

PFR-100M) to provide a higher power output. We also connect to the

RS-232 interface of an external digital meter (such as GDM-8261A)

through a USB to RS-232 converter cable. This part is solely to

demonstrate the Python script for controlling external RS-232

devices, serving as a reference for users.

Preparations

1. Connect the positive terminal of the PFR power supply to the

current jack of the GDM digital multimeter using a test lead.

2. Connect the GDM COM jack to the LED anode (positive) using a

test lead.

3. Connect the LED cathode (negative) to the negative terminal of

the PFR power supply with a test lead.

4. Connect CH1 of MPO-2000 to the anode (positive) of the LED

using a passive probe, and connect the probe ground to the

cathode (negative) of the LED to measure the voltage difference

across the LED.

5. Connect the USB Host port of MPO-2000 to a USB 2.0 HUB to

control the PFR power supply and GDM digital multimeter

(requires an RS232 to USB converter cable).

 Built-in Python APP and its Measurement Applications
Guide

179

LED testing circuit and wiring diagram

Precautions

1. Pay attention that the voltage setting of the PFR does not exceed
the maximum voltage indicated by the LED specifications.

2. Pay attention to the OCP setting of the PFR, ensuring that it does

not exceed the maximum current that GDM-8261A can
withstand.

File Usage Description

test_led_external_device_pro.py: Python script file
test_led_ external_device_pro.txt: parameter configuration file

 MPO-2000 Python Tutorial & Application Handbook

180

Execution Steps

1. Modify the parameters in the parameter configuration file

according to different requirements.

2. Execute the Python script.

Python Script Workflow

1. Load parameter configuration file.

2. Perform initial setup for MPO-2000 oscilloscope, DMM, and DC

power supply.

3. Set the voltage of the DC power supply and enable output.

4. Read the current measurement value from the DMM.

5. Read the voltage measurement value from channel one of the

oscilloscope.

6. Use Python graphic library to draw a curve on the screen.

7. Repeat step 3, 4, 5, 6, and 7 until the specified test count limit.

 Built-in Python APP and its Measurement Applications
Guide

181

Test Results

The output screen of test led external device pro APP

 MPO-2000 Python Tutorial & Application Handbook

182

Barcode Scanner Measurement Application

In the barcode scanner APP, we simulated the process of testing a

specific electrical parameter of components in the factory production

line. And record the measurement values of the test substance along

with the serial numbers on the barcode labels one by one in a file. As

shown in the figure below, we first set the DMM to the ohm mode

and connect the probes to two test points on the demo board. Then,

we use a barcode scanner to scan the serial number sticker on the

top right of the demo board and immediately read the resistance

value of the DUT by the DMM. After completion, the serial number

and measurement result are displayed on the screen, and the same

data is stored in a buffer. This process continues to record

measurement values until the script determines that the scanned

content is "EXIT," at which point the contents of the buffer are all

saved to the default file under Disk (csvdata.csv) before exiting the

Python program.

This example simply demonstrates the application of the barcode

scanner, and users can modify it according to different measurement

requirements.

 Built-in Python APP and its Measurement Applications
Guide

183

Preparations

1. Connect the barcode scanner to the USB host port of the MPO-

2000.

2. Connect the DMM probe of MPO-2000 to test point V2 (VBB) and

test point B on the demo board to measure the resistance value at

both ends of R1.

3. Prepare a barcode stickers with the content “EXIT”.

Barcode scanner measurement application wiring diagram

 MPO-2000 Python Tutorial & Application Handbook

184

Precautions

1. In this test case, we generate an EXIT barcode encoded in

Code39. During the test, the barcode can be scanned by a barcode

scanner to exit the Python program.

2. The lv.tick_inc() at the end of the while loop in the script should

not be given an excessively large value, as it may cause some

characters to be missed during scanning.

EXIT barcode

File Usage Description

barcode_scanner.py: Python script file

Execution Steps

1. Execute the Python script.

 Built-in Python APP and its Measurement Applications
Guide

185

Python Script Workflow

1. Continuously monitor barcode scanner input, and 'KEY_ENTER'

indicates the end of the string.

2. Read the input barcode and perform measurements.

3. Display the barcode and measurement results on the screen.

4. Upon detecting the end barcode 'EXIT', save all data to a file and

exit the program.

5. Return to 1.

 MPO-2000 Python Tutorial & Application Handbook

186

Test Results

The graphic frame can be displayed in the local area of the MPO-

2000 screen

Can be saved as a CSV file for easy access on a PC using applications

such as Excel.

 System Limitations

187

System Limitations

Here are the limitations in the system caused by resource utilization,

security considerations, and the inherent limits of the invoked

libraries:

1. If a script executed in the form of a Python APP involves file

opening and writing, data cannot be stored in the current path of

the script execution. This is because all other files under the

script's path will be deleted once the script execution is

completed. This limitation does not apply when executing the .py

file directly on Disk or USB flash disk.

2. The professional version can handle waveform data up to 100k

points. However, due to the limitations of the LVGL library itself,

when using the GUI library to draw waveform graphics, the total

data points cannot exceed 50k points.

3. The file editor provided on the machine is implemented using the

LVGL library. It can edit .py and .txt files, but the content of the

files opened is limited to 400 lines. For files exceeding this limit,

please perform editing on a PC first.

4. Due to system resource limitations, Python APP and Python

script are unable to simultaneously run bus decoding functions

for CAN FD, USB 2.0 (full speed), FlexRay, USB PD, and I2S. The

bus decoding function will automatically terminate when the

Python APP and Python script are running.

 MPO-2000 Python Tutorial & Application Handbook

188

5. When using a USB to RS-232 converter, we recommend products

that internally use FTDI's FT232RL chip or Prolific's PL2303 chip.

These are the converters that our drivers support and have been

tested for stable operation. Additionally, products with the

CH34x chip internally have been tested and found to be

incompatible.

6. When a USB Hub is required, consider the power supply

capability of the host. It is recommended not to connect more

than 4 USB devices to the USB Hub.

7. When using the Python GUI Library for drawing, if you need to

save the screen as an image file, please disable the ink-saving

mode of the machine's Hardcopy, otherwise the darker parts of

the screen may be automatically changed by the system to a

lighter color.

8. Includes pre-installed Python apps, with a maximum of up to 100

apps available in the Python APP selection screen. The storage

capacity for apps is limited to 20MB, and once exceeded, new

apps cannot be installed.

 Appendix

189

Appendix

Here are some practical application script cases we have actually run

on MPO-2000. Due to the testing process, it may be necessary to

install some mobile apps and properly configure them to interact

with Python scripts on MPO-2000. These mobile apps may be

removed from the market after some time, making it difficult to

reproduce the process. Users may need to make partial

modifications to these Python scripts to interact with similar

functioning mobile apps. Such applications typically require a

thorough understanding of the functionality, settings, and data

format for uploading data from the mobile app. Some may even

require the application for a personal account or API key to interact

with social software, necessitating a certain level of expertise for

successful execution. Therefore, we have not loaded these

application scripts onto MPO-2000, only providing a rough

description and source code for reference regarding the related

applications.

MQTT Remote Control Example 190
Principles and Explanations ... 190
Mobile App Configuration ... 191
Precautions .. 193
Execution Steps .. 193
Python Script Workflow ... 194

MQTT Measurement Example 195
Principles and Explanations ... 195
Python Script Workflow ... 195

 MPO-2000 Python Tutorial & Application Handbook

190

MQTT Remote Control Example

MQTT is a lightweight communication protocol based on the

Publish/Subscribe model. It is built on top of the TCP/IP protocol,

thus ensuring excellent cross-platform and interoperability, as well

as reliable message exchange. MQTT controls messages with a

minimum data size of only 2 bytes and can carry up to 256 Mb of

data. It is widely used as a communication protocol between IoT

devices.

We provide a Python library for MQTT on MPO-2000, enabling the

implementation of MQTT's publishing and subscribing

functionalities. The role of the broker requires robust computational

power and more resources, typically handled by servers and not

within our scope of application.

Principles and Explanations

In the script mqtt_dso_ctrl.py, MPO-2000 primarily serves as the

subscriber, receiving commands forwarded by the broker from the

mobile. It interprets the command content and executes the

corresponding actions. Here, we define two functionalities,

“Run/Stop” and “Autoset”, which correspond to two buttons on the

mobile app.

After receiving and executing the subscribed commands, the Python

script also acts as a publisher, sending the status of specific buttons

to the broker. The mobile app can use this to synchronize the

displayed button status with MPO-2000.

 Appendix

191

Similar applications, such as smart lighting and smart home

appliances at home, largely employ this mechanism, allowing us to

easily control them remotely via the mobile app.

Mobile App Configuration

Here we take the ‘IoT-Manager’ App for Android phones as an

example. The setup process is as follows:

1. Download the free software, install, and open it.

2. Press the function icon in the upper left corner and select 'MQTT

Connections' (as shown below).

 MPO-2000 Python Tutorial & Application Handbook

192

3. Select the second item ‘Mosquitto.org’ and swipe left to press

‘Edit’.

4. The 5th item, ‘Prefix,” should be changed from “/IoTmanager”

to “gw.” Then, press the icon at the top right marked “v” to

confirm and return.

 Appendix

193

Precautions

1. The network interface of MPO-2000 must be correctly configured

first.

2. DNS also needs to be configured, otherwise, it will not be able to

connect to the MQTT cloud server (Broker).

3. The data content of MPO-2000's Python script published to the

broker needs to reference the definition of the mobile App, with

different formats for each provider.

Execution Steps

1. After setting MPO-2000 to its default configuration,

appropriately configure and activate AWG channel 1, and

connect its output to oscilloscope's CH1.

2. Open the "IoT-Manager" App on your mobile phone.

3. Tap on the top-left corner icon and select "Dashboard" (if the top-

right icon is green, it indicates a connection; if red, press it to

confirm the connection status).

4. Execute the mqtt_dso_ctrl.py script.

5. The "IoT-Manager" App on your phone will display two buttons,

"Run/Stop" and "Autoset". Pressing either of these buttons will

prompt MPO-2000 to perform corresponding actions upon

receiving the subscribed command.

 MPO-2000 Python Tutorial & Application Handbook

194

Python Script Workflow

1. Connect to the broker.

2. Transmit the initial settings to the broker in the role of the

publisher. The mobile app, upon activation, will download the

settings from the broker in the role of the subscriber and create a

button.

3. Check for the receipt of button content subscribed to the broker

and instruct MPO-2000 to perform the corresponding action

(Run/Stop or Autoset). The mobile app will, upon detecting a

button pressed on the screen, transmit the command for the

corresponding button to the broker in the role of the publisher.

4. Verify if there has been a change in the Run/Stop status of MPO-

2000. If so, transmit the status to the broker in the role of the

publisher. The mobile app will check for the receipt of the

subscribed button status from the broker and update the

appearance of the button accordingly.

5. Repeat step 3 and 4..

Remote control screen of the mobile app

 Appendix

195

MQTT Measurement Example

By making slight modifications to the previous application, you can

easily switch the roles of the publisher and subscriber. Therefore,

MPO-2000 can publish measurement data to a cloud server (Broker)

while the mobile app continuously reads the measurement values

uploaded by MPO-2000. Before executing this Python script, please

refer to the configuration process in the previous section titled

'MQTT Remote Control Example.

Principles and Explanations

In the script mqtt_dso_meas.py, MPO-2000 primarily plays the role

of the publisher, periodically uploading a certain measurement

value to the broker, which then forwards the measurement data to

the subscribers. At this point, the mobile App can be configured as a

subscriber, with some mobile Apps even providing chart displays,

allowing the measured data can be visualized in graphical form.

Python Script Workflow

1. Connect to the broker.

2. Send the initial settings to the broker in the role of the publisher.

The mobile app, upon startup, will obtain the settings from the

broker in the role of the subscriber and establish the chart.

3. Periodically send MPO-2000 measurement values to the broker in

the role of the publisher. The mobile app will continuously check

for received measurement data subscribed to the broker and

update the chart accordingly.

4. Repeat step 3.

 MPO-2000 Python Tutorial & Application Handbook

196

The chart created by the mobile app using the measurement data subscribed

to the broker.

 Reference Materials

197

Reference Materials

The built-in Python APP source code, oscilloscope library source

code, and documentation for MPO-2000:

https://github.com/OpenWave-GW/Python_APP/

MicroPython libraries official website documentation:

https://docs.micropython.org/en/v1.19.1/library/index.html

The LVGL documentation and examples from LVGL Kft. company:

https://sim.lvgl.io/v8.3/micropython/ports/javascript/index.html

https://github.com/OpenWave-GW/Python_APP/
https://docs.micropython.org/en/v1.19.1/library/index.html
https://sim.lvgl.io/v8.3/micropython/ports/javascript/index.html

 MPO-2000 Python Tutorial & Application Handbook

198

The following is Good WillL Instrument's copyright statement for

the provided Python APP source code and the Python modules and

libraries:

GW Python APP License

Copyright (c) 2023 GOOD WILL INSTRUMENT CO., LTD.

Permission is hereby granted, free of charge, to any person obtaining

a copy of this software and associated documentation files (the

"Software"), to use the Software for the purposes of development,

modification, testing, and distribution of code specifically designed

to operate with GOOD WILL INSTRUMENT’s programmable

instruments, subject to the following conditions:

The above copyright notice and this permission notice shall be

included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY

OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT

LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR

COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES

OR OTHER LIABILITY, WHETHER IN AN ACTION OF

CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF

OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR

OTHER DEALINGS IN THE SOFTWARE.

 Reference Materials

199

The following is the copyright statement provided by vsolina:

MIT License

Copyright (c) 2022 vsolina

Permission is hereby granted, free of charge, to any person obtaining

a copy of this software and associated documentation files (the

"Software"), to deal in the Software without restriction, including

without limitation the rights to use, copy, modify, merge, publish,

distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject

to the following conditions:

The above copyright notice and this permission notice shall be

included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY

OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT

LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR

COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES

OR OTHER LIABILITY, WHETHER IN AN ACTION OF

CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF

OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR

OTHER DEALINGS IN THE SOFTWARE.

 MPO-2000 Python Tutorial & Application Handbook

200

The following is the copyright statement provided by LVGL Kft.

MIT licence

Copyright (c) 2021 LVGL Kft

Permission is hereby granted, free of charge, to any person obtaining

a copy of this software and associated documentation files (the

“Software”), to deal in the Software without restriction, including

without limitation the rights to use, copy, modify, merge, publish,

distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject

to the following conditions:

The above copyright notice and this permission notice shall be

included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY

OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT

LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR

COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES

OR OTHER LIABILITY, WHETHER IN AN ACTION OF

CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF

OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR

OTHER DEALINGS IN THE SOFTWARE.

 Reference Materials

201

The following is the copyright statement provided by Damien P.

George.

The MIT License (MIT)

Copyright (c) 2013-2023 Damien P. George

Permission is hereby granted, free of charge, to any person obtaining

a copy of this software and associated documentation files (the

"Software"), to deal in the Software without restriction, including

without limitation the rights to use, copy, modify, merge, publish,

distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject

to the following conditions:

The above copyright notice and this permission notice shall be

included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY

OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT

LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR

COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES

OR OTHER LIABILITY, WHETHER IN AN ACTION OF

CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF

OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR

OTHER DEALINGS IN THE SOFTWARE.

--

 MPO-2000 Python Tutorial & Application Handbook

202

Unless specified otherwise (see below), the above license and

copyright applies to all files in this repository.

Individual files may include additional copyright holders.

The various ports of MicroPython may include third-party software

that is licensed under different terms. These licenses are summarised

in the tree below, please refer to these files and directories for

further license and copyright information. Note that (L)GPL-licensed

code listed below is only used during the build process and is not

part of the compiled source code.

/ (MIT)
 /drivers

 /cc3100 (BSD-3-clause)

 /lib
 /asf4 (Apache-2.0)

 /axtls (BSD-3-clause)
 /config

 /scripts
 /config (GPL-2.0-or-later)

 /Rules.mak (GPL-2.0)
 /berkeley-db-1xx (BSD-4-clause)

 /btstack (See btstack/LICENSE)

 /cmsis (BSD-3-clause)
 /crypto-algorithms (NONE)

 /libhydrogen (ISC)
 /littlefs (BSD-3-clause)

 /lwip (BSD-3-clause)
 /mynewt-nimble (Apache-2.0)

 /nrfx (BSD-3-clause)
 /nxp_driver (BSD-3-Clause)

 /oofatfs (BSD-1-clause)

 /pico-sdk (BSD-3-clause)
 /re15 (BSD-3-clause)

 /stm32lib (BSD-3-clause)

 Reference Materials

203

 /tinytest (BSD-3-clause)
 /tinyusb (MIT)

 /uzlib (Zlib)
 /wiznet5k (MIT)

 /logo (uses OFL-1.1)
 /ports

 /cc3200

 /hal (BSD-3-clause)
 /simplelink (BSD-3-clause)

 /FreeRTOS (GPL-2.0 with FreeRTOS exception)
 /esp32

 /ppp_set_auth.* (Apache-2.0)
 /stm32

 /usbd*.c (MCD-ST Liberty SW License Agreement V2)
 /stm32_it.* (MIT + BSD-3-clause)

 /system_stm32*.c (MIT + BSD-3-clause)

 /boards
 /startup_stm32*.s (BSD-3-clause)

 /*/stm32*.h (BSD-3-clause)
 /usbdev (MCD-ST Liberty SW License Agreement V2)

 /usbhost (MCD-ST Liberty SW License Agreement V2)
 /teensy

 /core (PJRC.COM)
 /zephyr

 /src (Apache-2.0)

 /tools
 /dfu.py (LGPL-3.0-only)

	Preface
	System Operation and Architecture
	Differences Between Basic and Professional Versions
	Python Script Memory Usage
	External USB Device Support
	Python Graphics Library Support
	Packaging Python Scripts into a Python App

	Python Basic
	Coding Style Guides
	Comments
	Single-line Comment
	Multi-line Comment

	Variables
	Data Types
	Integer
	Floating Point
	String
	Boolean
	Tuple
	List
	Dictionary

	Array
	Operators
	Arithmetic Operators
	Comparison Operators
	Logical Operators

	Control Flow Statements
	If Statement
	For Loop Statements
	While Statement

	Functions
	Syntax and Usage of Functions
	Using Global Variables in Functions
	Lambda Function

	Class
	Creating a Class
	Creating an Object
	Accessing Attributes
	Using Methods
	Inheritance

	Print
	%s - string
	%d - integer
	%f – float
	%x - hexadecimal integer
	%o - octal integer

	Module
	Import
	Using the import statement
	Loading Modules and Classes from a Library

	File
	Write to a File
	Read File

	Try… Except
	Garbage Collection
	Common Errors

	Oscilloscope Library
	Basic Oscilloscope Operations with Python
	Controlling the Built-In Spectrum Analyzer
	Controlling the Built-In AWG
	Controlling the Built-In DMM
	Controlling the Built-In DC Power Units
	Control Method of GO-NOGO Output Pin

	Control of Connected External Devices
	Simple Method for Connecting External USB Devices
	Using the PSW Module
	Control External Devices with SCPI Commands

	Further Learning with the Serial Module
	Get External Device Model and Serial Number
	Connect to External Devices via USB CDC-ACM Protocol
	Connected to External Devices via the RS232 Interface.
	Connecting Multiple External Devices of Different Models
	Connecting Multiple External Devices of the Same Model

	Graphical User Interface in Python
	Introduction to LVGL
	LVGL Basic Examples
	LVGL Initialization
	Text Display
	Text Rotation
	Style Configuration
	Displaying PNG Images
	Simple Line Chart
	Line Charts and Scales
	Text Area
	Table
	Buttons and Switches
	Progress Bars and Sliders

	DSO Drawing Module
	Text and Styles
	Font
	PNG Images
	Line Chart

	Python Script Editing, Debugging, and Execution
	Editing Using a Web Editor via Ethernet Connection
	WebIDE Startup
	Instructions for WebIDE Operations
	Example of Operating Procedures

	Editing Using the Simple Editor on the Machine
	Operation Procedure
	Operating Instructions

	Built-in Python APP and its Measurement Applications Guide
	BJT Output Characteristics Curve
	Preparations
	Precautions
	File Usage Description
	bjt char curve APP:
	bjt char curve pro APP:

	Execution Steps
	Python Script Workflow
	bjt char curve APP:
	bjt char curve APP:

	Characteristics Curve of the Device Under Test
	Test Results

	BJT Output Characteristic Curves (Using External DC Power Supply)
	Preparations
	Precautions
	File Usage Description
	Execution Steps
	Python Script Workflow
	Characteristics Curve of the Device Under Test
	Test Results

	LC Oscillator Circuit Temperature vs. Frequency Characteristics Curve
	Preparations
	LC oscillating APP:
	LC oscillating pro APP:

	Precautions
	File Usage Description
	LC oscillating APP:
	LC oscillating pro APP:

	Execution Steps
	Python Script Workflow
	LC oscillating APP:
	LC oscillating pro APP:

	Test Results

	Fuse Endurance Test
	File Usage Description
	Execution Steps
	Python Script Workflow
	Test Results

	LED Forward Bias Voltage Characteristics Curve
	Preparations
	Precautions
	File Usage Description
	Execution Steps
	Python Script Workflow
	Test Results

	LED Forward Bias Voltage Characteristics Curve (Using External Power Supply and Digital Multimeter)
	Preparations
	Precautions
	File Usage Description
	Execution Steps
	Python Script Workflow
	Test Results

	Barcode Scanner Measurement Application
	Preparations
	Precautions
	File Usage Description
	Execution Steps
	Python Script Workflow
	Test Results

	System Limitations
	Appendix
	MQTT Remote Control Example
	Principles and Explanations
	Mobile App Configuration

	MQTT Measurement Example

	Reference Materials

