Digital Storage Oscilloscope

GDS-3000A Series

USER MANUAL

This manual contains proprietary information, which is protected by copyright. All rights are reserved. No part of this manual may be photocopied, reproduced or translated to another language without prior written consent of Good Will company.

The information in this manual was correct at the time of printing. However, Good Will continues to improve products and reserves the rights to change specification, equipment, and maintenance procedures at any time without notice.

Table of Contents

SAFETY INSTRUCTIONS 4
GETTING STARTED 9
GDS-3000A Series Overview 10
Appearance 14
Set Up 26
Built-in Help 35
MEASUREMENT 36
Basic Measurement 37
Automatic Measurement 43
Cursor Measurement 59
Math Operation 66
ADVANCED CONFIGURATION 77
Acquisition 80
Segmented Memory Acquisition 85
Horizontal View 96
Vertical View (Channel) 103
Bus Key Configuration 113
Trigger 138
Search 175
System Settings 183
Display 188
ARBITRARY WAVE GENERATOR 194
Arbitrary Wave Generator Operation 195
POWER ANALYSIS (OPTIONAL) 226
Power Analysis Overview 228
Power Quality 230
Switching Loss 234
Harmonics 239
Ripple 249
Inrush 251
Modulation 253
Safe Operation Area 257
Transient 261
Efficiency 264
B-H curve 267
Control Loop Response 271
Power Supply Rejection Ratio (PSRR) 283
Turn On/Off 287
SPECTRUM ANALYZER 291
Spectrum Analyzer operation 292
APPLICATIONS 309
Introduction 310
Go-NoGo application 313
DVM application 318
Data Log application 320
Digital Filter application 322
Mask application 324
FRA application 335
SAVE/RECALL 340
File Format/Utility 341
Create/Edit Labels 347
Save 350
Recall 357
Reference Waveforms 362
FILE UTILITIES 364
HARDCOPY KEY 372
REMOTE CONTROL CONFIG 374
Interface Configuration 375
Web Server 387
MAINTENANCE 391
FAQ 396
APPENDIX 398
Updating the Firmware 399
GDS-3000A Series Specifications 401
Probe Specifications 408
Dimensions 409
Certificate Of Compliance 410
INDEX 411

SAFETY INSTRUCTIONS

This chapter contains important safety instructions that you must follow during operation and storage. Read the following before any operation to insure your safety and to keep the instrument in the best possible condition.

Safety Symbols

These safety symbols may appear in this manual or on the Product name.

WARNING

CAUTION

Warning: Identifies conditions or practices that could result in injury or loss of life.

Caution: Identifies conditions or practices that could result in damage to the equipment or to other properties.

DANGER High Voltage
Attention required. Refer to the Manual

Protective Conductor Terminal

Earth (ground) Terminal

Do not dispose electronic equipment as unsorted municipal waste. Please use a separate collection facility or contact the supplier from which this instrument was purchased.

Safety Guidelines

General Guideline • Make sure the BNC input voltage does not exceed 300 Vrms .

- Never connect a hazardous live voltage to the ground side of the BNC connectors. It might lead to fire and electric shock.
- Do not place any heavy object on the GDS3000A series.
- Avoid severe impact or rough handling that leads to damaging the GDS-3000A series.
- Do not discharge static electricity to the GDS3000A series.
- Use only mating connectors, not bare wires, for the terminals.
- Do not block the cooling fan opening.
- Do not perform measurement at a power source or building installation (Note below).
- Do not disassemble the GDS-3000A series unless you are qualified.

Note
(Measurement categories) EN 61010-1:2010 specifies the measurement categories and their requirements as follows. The GDS-3000A series falls under category I.

- Measurement category IV is for measurements performed at the source of low-voltage installation.
- Measurement category III is for measurements performed in the building installation.
- Measurement category II is for measurements performed on circuits directly connected to the low voltage installation.
- Measurement category I is for measurement performed on circuits not directly connected to Mains.

Power Supply • AC Input voltage: 100-240V AC, 50-60Hz, auto selection. Power consumption: 100W for GDS-3000A series.

- Connect the protective grounding conductor of the AC power cord to an earth ground, to avoid electrical shock.

Cleaning the GDS-3000A Series

- Disconnect the power cord before cleaning.
- Use a soft cloth dampened in a solution of mild detergent and water. Do not spray any liquid.
- Do not use chemicals containing harsh materials such as benzene, toluene, xylene and acetone.

Operation

Environment

Note

- Location: Indoor, no direct sunlight, dust free, almost non-conductive pollution (Note below)
- Relative Humidity: $\leq 80 \%, 40^{\circ} \mathrm{C}$ or below; $\leq 45 \%$, $41^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}$
- Altitude: < 2000m
- Temperature: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
(Pollution Degree) EN 61010-1:2010 specifies the pollution degrees and their requirements as follows. The GDS-3000A series falls under degree 2.

Pollution refers to "addition of foreign matter, solid, liquid, or gaseous (ionized gases), that may produce a reduction of dielectric strength or surface resistivity".

- Pollution degree 1: No pollution or only dry, non-conductive pollution occurs. The pollution has no influence.
- Pollution degree 2: Normally only non-conductive pollution occurs. Occasionally, however, a temporary conductivity caused by condensation must be expected.
- Pollution degree 3: Conductive pollution occurs, or dry, nonconductive pollution occurs which becomes conductive due to condensation which is expected. In such conditions, equipment is normally protected against exposure to direct sunlight, precipitation, and full wind pressure, but neither temperature nor humidity is controlled.

Storage
environment

- Location: Indoor
- Temperature: $-10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$
- Humidity: Up to 93% RH (non-condensing) / $\leq 40^{\circ} \mathrm{C}$, up to $65 \% \mathrm{RH}$ (non-condensing) / $41^{\circ} \mathrm{C}$ $\sim 60^{\circ} \mathrm{C}$

Disposal

Do not dispose this instrument as unsorted municipal waste. Please use a separate collection facility or contact the supplier from which this instrument was purchased. Please make sure discarded electrical waste is properly recycled to reduce environmental impact.

Power cord for the United Kingdom

When using the oscilloscope in the United Kingdom, make sure the power cord meets the following safety instructions.

NOTE: This lead/appliance must only be wired by competent persons

!WARNING: THIS APPLIANCE MUST BE EARTHED
IMPORTANT: The wires in this lead are coloured in accordance with the following code:

Green/ Yellow:	Earth
Blue:	Neutral
Brown:	Live (Phase)

As the colours of the wires in main leads may not correspond with the coloured marking identified in your plug/appliance, proceed as follows:

The wire which is coloured Green \& Yellow must be connected to the Earth terminal marked with either the letter E, the earth symbol ($)$ or coloured Green/Green \& Yellow.
The wire which is coloured Blue must be connected to the terminal which is marked with the letter N or coloured Blue or Black.

The wire which is coloured Brown must be connected to the terminal marked with the letter L or P or coloured Brown or Red.

If in doubt, consult the instructions provided with the equipment or contact the supplier.
This cable/appliance should be protected by a suitably rated and approved HBC mains fuse: refer to the rating information on the equipment and/or user instructions for details. As a guide, a cable of $0.75 \mathrm{~mm}^{2}$ should be protected by a 3 A or 5 A fuse. Larger conductors would normally require 13A types, depending on the connection method used.
Any exposed wiring from a cable, plug or connection that is engaged in a live socket is extremely hazardous. If a cable or plug is deemed hazardous, turn off the mains power and remove the cable, any fuses and fuse assemblies. All hazardous wiring must be immediately destroyed and replaced in accordance to the above standard.

ETTING STARTED

This chapter describes the GDS-3000A series in a nutshell, including its main features and front/ rear panel. After going through the overview, follow the Set Up section to properly set up the device for first time use. The Set Up section also includes an introduction on how to use this manual effectively.
GDS-3000A Series Overview 10
Integrated instruments and series lineup 10
Main Features. 10
Accessories 12
Appearance 14
Front panel 14
GDS-3000A 2CH models 14
GDS-3000A 4CH models 14
Rear Panel and Right side panel. 22
LCD Display 24
Set Up 26
Tilt Stand 26
Power Up 26
First Time Use 27
How to Use This Manual 30
Built-in Help 35

GDS-3000A Series Overview

Integrated instruments and series lineup
The GDS-3000A series consists of 4 models. Note that throughout the user manual, the term "GDS-3000A series" refers to all models of the series, unless stated otherwise.

Model name	Frequency bandwidth	Input channels	Max. Real-time Sampling Rate
GDS-3352A	350 MHz	2	$5 G S a / s$
GDS-3652A	650 MHz	2	$5 G S a / s$
GDS-3354A	350 MHz	4	$5 G S a / \mathrm{s}$
GDS-3654A	650 MHz	4	$5 G S a / \mathrm{s}$

Main Features

Features

- 10.2 inch, 800×480, WVGA TFT display.
- Available from 350 MHz to 650 MHz .
- Real-time sampling rate of 5GSa/s max.
- Deep memory: 200M points record length per channel.
- Waveform capture rate of 200,000 waveforms per second.
- Vertical sensitivity: 1mV/div~10V/div @ 1M Ω; $1 m V /$ div~1V/div @ 50Ω
- Segmented Memory: Optimizes the acquisition memory to selectively capture only the important signal details. Up to 490,000 successive waveform segments can be captured with a time-tag resolution of 4 ns .
- Waveform Search: Allows the scope to search for a number of different signal events.
- Arbitrary Wave generator: Full-function dual channel arbitrary waveform generator.
- Spectrum Analyzer: A handy tool to perform signal analysis in the frequency domain.
- Logic Analyzer (option): Can be used to measure discrete inputs or measure values on various buses.
- The optional power analysis software provides automatic measurement for a number of advanced measurement types such as power quality, harmonics, ripple, inrush current, etc.
- Powerful embedded applications such as: Data Logging, Digital Voltmeter, Go-No Go, Mask, Digital filter, FRA etc.
- On-screen Help.
- 800 M byte SLC internal flash disk.

Interface

- USB (USBTMC) device port: rear panel, for remote control.
- USB host device port: front panel, for storage devices
- Ethernet port as standard.
- Probe compensation output with selectable output frequency ($1 \mathrm{kHz} \sim 200 \mathrm{kHz}$).
- Calibration output.
- RS232 DB-9 male connector for remote control
- DB-15 female SVGA output connector
- Optional GPIB interface
- $\pm 12 \mathrm{~V} / 500 \mathrm{~mA}$ power supply receptacles for current probe (GCP-530/1030) usage.

Accessories

Standard Accessories	Description
Power cord	$\mathrm{N} /$ A region dependent
GTP-351R	350MHz Passive probe for GDS-3352A/3354A
GTP-501R	500 MHz Passive probe for GDS-3652A/3654A
GTL-110	Test lead for AWG, BNC to BNC connector
Optional Accessories	Description
DS3A-16LA	16 CH logic analyzer
DS3A-GPIB	GPIB interface (Factory Pre-installed)
GTP-033A	$35 \mathrm{MHz} \mathrm{1:1} \mathrm{Passive} \mathrm{probe}$
GTP-352R	350MHz 20:1 Passive probe
GDP-025	25 MHz High voltage differential probe
GDP-050	50 MHz High voltage differential probe
GDP-100	100 MHz High voltage differential probe
GCP-300	$300 \mathrm{kHz} / 200 \mathrm{~A}$ Current probe
GCP-500	$500 \mathrm{kHz} / 150 \mathrm{~A}$ Current probe
GCP-530	$50 \mathrm{MHz} / 30 \mathrm{~A}$ Current probe
GCP-1000	$1 \mathrm{MHz} / 70 \mathrm{~A}$ Current probe
GCP-1030	100MHz/30A Current probe
GTL-16LA3A	16-Channel Logic Analyzer Probe
GTL-248	GPIB Cable, Double Shielded, 2000 mm
GTL-232	RS-232C cable, 9-pin female to 9-pin female, Null modem for computer
GTL-246	USB 2.0 cable, A-B type cable 4P, 1800mm
GRA-443-E	Rack Adapter Panel
GKT-100	Deskew Fixture
Standard Apps	Description
Go-NoGo	Go-NoGo testing app.

DataLog	Waveform or image data logging app.
DVM	Digital Voltmeter app.
Digital Filter	High ,low or band pass digital filter for analog inputs.
Mask	Creates shape templates for signal comparison.
Remote Disk	Allows the scope to mount a network share drive.
Demo mode	Demonstration mode that is used with the GDB-03 demo board.
FRA	Frequency Response Analyzer
Optional App	Description
DS3A-PWR	Power Analysis
Drivers, others	Description
Driver	LabVIEW driver

Appearance

Front panel
GDS-3000A 2CH models

GDS-3000A 4CH models

1 LCD Display 10.2" WVGA TFT color LCD, 800×480 resolution, wide angle view display.

2 Hardcopy Key Hardcopy The Hardcopy key is a quick-save key.
 For more information see pages 372 .

Menu Off Key Menu Off Use the Menu Off key to hide the
 onscreen menu system.

LA/AWG Key
LA/ AWG
 This key is used to access installed arbitrary wave generator or optional logic analyzer.

Menu Keys The side menu and bottom menu keys are used to make selections from the soft-menus on the LCD user interface.

To choose menu items, use the 7 Bottom menu keys located on the bottom of the display panel.

To select a variable or option from a menu, use the side menu keys on the side of the panel. See page 30 for details.

3 Cursor
Cursor
Configures and runs cursor measurements.
Intensity
Power Analysis

5 Function Keys The Function keys are used to enter and configure different functions on the GDS-3000A series.

APP	APP	Configures and runs the applications.
Acquire	Acquire	Configures the acquisition mode, including Segmented Memory acquisition.
Save/Recall	Save/Recall	Used to save and recall waveforms, images, panel settings.
Default	Default	Resets the oscilloscope to the default settings.
Utility	Utility	Configures the Hardcopy key, display time, language, probe compensation and calibration. It also accesses the file utilities menu.

	Measure	Measure	Configures and runs automatic measurements.
6	Numeric keypad		The numeric keypad is used to enter values and parameters. It is often used in conjunction with the VARIABLE Knob and Select Key.
7	Autoset	Autoset	Press the Autoset key to automatically set the trigger, horizontal scale and vertical scale.
8	Run/Stop Key	Run/Stop Single	Press to Freeze (Stop) or continue (Run) signal acquisition (page 39). The run stop key is also used to run or stop Segmented Memory acquisition (page 88).
	Single		Sets the acquisition mode to single triggering mode.
9	Trigger Controls	The trigger controls are used to control the trigger level and options.	
	Level Knob		Used to set the trigger level. Push the Level Knob to set the trigger level to the half way point (50%)
	Trigger Menu Key	Menu	Used to bring up the trigger menu.
	Force - Trig	Force-Trig	Press to force an immediate trigger of the waveform.

10 Horizontal

Controls | The horizontal controls are used to set the time |
| :--- |
| base settings, zoom into the waveforms/traces |
| and search for events. |
| Position |
| Zoom |
| Position the waveforms/traces |
| horizontally on the display screen. |
| Pressing the knob will reset the |
| position to zero. |

14 USB Host Port \quad Type A, 1.1/2.0 compatible. Used for
 data transfer.

Logic Analyzer Logic Analyzer Logic Analyzer probe connector

Rear Panel and Right side panel

1 Calibration Output

TRIG OUT/ Outputs the signal for vertical scale
$\substack{\text { GAL }}$

Go-No Go
Output
(G్రO/NO GO

Outputs Go-No Go test results (page 313) as a 500 us pulse signal.

Output the GEN1 or GEN2 signal from the Arbitrary Wave Generator function. (see page 196).

2 USB (USBTMC)
Device Port
LAN (Ethernet)
Port

The Type B USB (USBTMC) Device Port is used for remote control.

The LAN port is used for remote control over a network or when combined with the Remote Disk app, allows the scope to be mounted to a share disk.

RS232 port

VGA port

GPIB port

3 Power Input Socket

Power cord socket accepts AC mains, $100 \sim 240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$.

For power up sequence, see page 26.

It is used for RS232 remote control

Outputs SVGA resolution to an external display.

24 pin female GPIB port.

4 Security Slot \square Kensington security slot compatible.
5 Power Supply Receptacle

$+/-12 \mathrm{~V}$ power supply for current probe usage.

LCD Display

Below is a general description of the main display. As the display changes while activating the different functions of the GDS-3000A, please refer to each function sub-chapters of this user manual for more details.

Analog
Waveforms
Bus decoding

Reference
waveform
Channel Indicators

Shows the analog input signal waveforms.
Channel 1: Yellow Channel 2: Blue
Shows serial bus data decoding. The values are displayed in hex or binary.

Reference waveform(s) can be displayed for reference, comparison or other operations.
The channel indicators for each activated channels are located at the zero volt level of each signals. Any active channel is shown with a solid color.
Example: Bus indicator(B)

1. Reference waveform indicator

M Math indicator

Trigger Position Shows the position of the trigger.
Horizontal Status Shows the horizontal scale and position.

Date and Time	24 Aug 2021 14：32：28
	Current date and time（page 184）．
Trigger Level	－Shows the trigger level on the graticule．
Memory Bar	～以N
	The ratio and the position of the displayed waveform compared to the internal memory （page 96）．
Trigger Status	Trig＇d Triggered．
	PrTrig Pre－trigger．
	Trig？Not triggered，display not updated．
	Stop Trigger stopped．Also appears in Run／Stop（page 39）．
	Roll Roll mode．
	Auto Auto trigger mode．
	For trigger details，see page 138.
Acquisition Mode	\square Normal mode
	M1 Peak detect mode
	\square Average mode
	$\sqrt{\text { HL }}$ High Resolution mode
	For acquisition details，see page 80.
Signal Frequency	99.9857 kHz Shows the trigger source frequency．
Trigger Configuration	（1） f V DC Trigger source，slope， voltage and coupling．
Horizontal Status	

For trigger details，see page 138.
Channel Status
1 프 2．日0V 是 Channel 1，DC coupling，2V／Div， both bandwidth limit， 50 ohm input impedance are on．
For channel details，see page 103.

Set Up

Tilt Stand

Tilt
To tilt, push the legs outward, as shown below.

Stand To stand the scope upright, push the legs back under the casing as shown below.

Power Up

Requirements The GDS-3000A series accepts line voltages of 100 $\sim 240 \mathrm{~V}$ at 50 or 60 Hz .

Step

1. Connect the power cord to the rear panel socket.

2. Press the POWER key. The display becomes active in \sim 30 seconds.

- $1: \mathrm{ON}$

1 0: OFF

$!{ }_{\text {Note }}$
The GDS-3000A series recovers the state right before the power is turned OFF. The default settings can be recovered by pressing the Default key on the front panel. For details, see page 357.

First Time Use
Background This section describes how to connect, adjust the scale and compensate the probe. Before operating the GDS-3000A series in a new environment, run these steps to make sure the instrument performs at its full potential.

1. Power On Follow the procedures on the previous page.
2. Firmware Update to the latest firmware. Page 399
3. Set the Date Set the date and time. Page 184 and Time

4. Reset System	Reset the system by recalling the factory settings. Press the Default key on the front panel. For details, see page 357.

5. Connect the Connect the probe that you will use for probe measurements to the Channel 1 input and to the probe compensation output. This output provides by default a 2 V peak to peak, 1 kHz square wave for signal compensation.

Set the probe attenuation to x10 if the probe has adjustable attenuation.

6. Capture Signal Press the Autoset key. A square (Autoset) waveform appears on the center of the screen. For Autoset details, see page 38 .

7. Select Vector

Waveform
3. Press the UTILITY key followed by pressing the DISPLAY key from the bottom menu, and then set the display type to Vector.

Display

8. Compensate Turn the adjustment point on the probe to make the probe the square waveform as flat as possible.

Under
Compensation

Normal

Over Compensation

9. Start operations Continue with the other operations.

Measurement: page 36 Advanced Configuration: page 77
Using the Spectrum
Analyzer: page 291
Save/Recall: page 339 File Utilities: page 364
Hardcopy key: page 372 Remote Control: page 374

Maintenance: page 391

How to Use This Manual

Background This section describes the conventions used in this manual to operate the GDS-3000A series.

Throughout the manual any reference to pressing a menu key refers to the keys directly below or beside any menu icons or parameters.

When the user manual says to "toggle" a value or parameter, press the corresponding menu item. Pressing the item will toggle the value or parameter.

Active parameters are highlighted for each menu item. For example in the example below, Coupling is currently set to DC.
If a menu item can be toggled from one value or parameter to another, the available options will be visible, with the current option highlighted. In the example below the slope can be toggled from a rising slope to a falling slope or either slope.

Selecting a Menu When the user manual says to "select" a value Item, Parameter or Variable from one of the side menu parameters, first press the corresponding menu key and use the VARIABLE knob to either scroll through a parameter list or to increase or decrease a variable.

Example 1

4. Press a bottom menu key to access the side menu.
5. Press a side menu key to either set a parameter or to access a sub menu.

6. If accessing a sub menu or setting

VARIABLE a variable parameter, use the VARIABLE knob to scroll through menu items or variables. Use the Select key to confirm and exit.

7. Press the same bottom menu key again to reduce the side menu.

Source 1
CH1

Example 2 For some variables, a circular arrow icon indicates that the variable for that menu key can be edited with the VARIABLE knob.

8. Press the desired menu key to select it. The circular arrow will become highlighted.

Toggling a Menu 9. Use the VARIABLE knob to edit the value. Parameter

10. Press the bottom menu key to toggle the parameter.

Reduce Side Menu

11. To reduce the side menu, press the corresponding bottom menu that brought up the side menu.

For example: Press the Source soft-key to reduce the Source menu.

Reduce Lower Menu

12. Press the relevant function key again to reduce the bottom menu. For example: press the Trigger Menu key to reduce the trigger menu.

Remove All
Menus

13. Press the Мепи Off key to reduce the side menu, press again to reduce the bottom menu.

Remove On-	14. The Menu Off key can also be used to remove any on screen Messages
screen messages.	

Built-in Help

Press and hold any key on front panel for few seconds to launch the built-in Help contents. The help menu contains information on how to use the front panel keys.

Panel Operation Press and hold any key for few seconds to launch introduction of the select key. The display changes to Help mode.

Example: Help on

Exit
Further press any key to close the Help contents shown on screen display.

Measurement

Basic Measurement 37
Channel Activation 37
Autoset 38
Run/Stop 39
Horizontal Position/Scale 40
Vertical Position/Scale 42
Automatic Measurement 43
Measurement Items 43
Add Measurement 47
Remove Measurement 49
Measurement Shortcuts 51
Gated mode 53
Display All mode 53
High Low Function 54
Statistics 56
Reference Levels 58
Cursor Measurement 59
Use Horizontal Cursors. 59
Use Vertical Cursors 62
Math Operation 66
Basic Math Overview \& Operators 66
Addition/Subtraction/Multiplication/Division. 66
FFT Overview \& Window Functions 68
FFT Operation 69
Advanced Math Overview 72
Advanced Math Operation 73

Basic Measurement

This section describes the basic operations required in capturing, viewing and measuring the input signal. For more detailed or more specific operations, see the following chapters.

- Advanced Configuration \rightarrow from page 77
- Arbitrary Wave Generator \rightarrow from page 175
- Spectrum Analyzer \rightarrow from page 226
- Applications \rightarrow from page 309

Before operating the oscilloscope, please see the Getting Started chapter, page 9.

Channel Activation

Activate Channel To activate an input channel, press a channel key.

When activated, the channel
key will light up. The corresponding channel menu will also appear.

Each channel is associated with the color shown beside each channel's vertical SCALE dial: CH1: yellow, CH2: blue

When a channel is activated, it is shown above the bottom menu system.

De-activate	
Channel	To deactivate a channel, press the corresponding channel key again. If the channel menu is not open, press the channel key twice (the first press shows the Channel menu).

Default Setup

To activate the default state, press Default (this will reset the system and
 recall the factory defaults, see page 357).

Autoset

Background The Autoset function automatically configures the panel settings to position the input signal(s) to the best viewing condition. The GDS-3000A series automatically configures the following parameters:

- Horizontal scale
- Vertical scale
- Trigger source channel

There are two operating modes for the Autoset function: Fit Screen Mode and AC Priority Mode.
Fit Screen Mode will fit the waveform to the best scale, including any DC components (offset). AC priority mode will scale the waveform to the screen by removing any DC component.

Panel Operation 1. Connect the input signal to the

Autoset

 GDS-3000A series and press the Autoset key.
2. The waveform appears in the center of the display.

Before

After

3. To undo Autoset, press Undo Autoset from the bottom menu.

$$
\begin{aligned}
& \text { Undo } \\
& \text { Autoset }
\end{aligned}
$$

Limitation Autoset does not work in the following situations:

- Input signal frequency is less than 20 Hz
- Input signal amplitude is less than 10 mV

$!$ Note
The Autoset key does NOT automatically activate the channels to which input signals are connected.

Run/Stop

Background By default, the waveform on the display is constantly updated (Run mode). Freezing the waveform by stopping signal acquisition (Stop mode) allows flexible observation and analysis. To enter Stop mode, two methods are available: pressing the Run/Stop key or using the Single Trigger mode.
Stop mode icon Stop When in Stop mode, the
Triggered icon Trig'd Stop icon appears at the top of the display.

Freeze Waveform Press the Run/Stop key once. using the Run/Stop Key The Run/Stop key turns red. The waveform and signal acquisition freezes.

Stop:

	To unfreeze, press the Run/Stop Run: key again. The Run/Stop key turns green again.
Freeze Waveform by Single Trigger Mode	Press the Single key to go into the Single Trigger mode. The Single key turns bright white. In the Single Trigger mode, the scope will be put into the pre- trigger mode until the scope encounters the next trigger point. After the scope has triggered, it will remain in Stop mode, until the Single key is pressed again or the Run/Stop key is pressed.
The waveform can be moved or scaled in both	
Raveform Operation Stop mode, but in different manners. For details, see page 96 (Horizontal position/scale) and page 103 (Vertical position/scale).	

Horizontal Position/Scale

For more detailed configuration, see page 96.

Set Horizontal Position	The horizontal position knob moves the waveform left and right.
Set Hosition > Position to 0	Pressing the horizontal position knob will reset the horizontal position to 0.

Alternatively, pressing the Acquire
key and then pressing Reset H Position to 0 s from the bottom menu will also reset the horizontal position.

As the waveform moves, the display bar on the top of the display indicates the portion of the waveform currently shown on the display and the position of the horizontal marker on the waveform.

Position Indicator The horizontal position is shown at the bottom of the display grid to the right.

$5 u s$

Select Horizontal To select the timebase, turn the
SCALE
Scale
horizontal SCALE knob; left (slow) or right (fast).

Range $\quad 1 n /$ div~1000s/div 1-2-5 increments
The scale is displayed to the left at the bottom of the screen.
(5us) 0.00000s
Display bar The display bar indicates how much of the waveform is displayed on the screen at any given time. Changes to timebase will be reflected on the display bar.

Stop mode In the Stop mode, the waveform size changes according to the scale.

$!$ Note
The Sample rate changes according to the timebase and record length. See page 84.

Vertical Position/Scale

For more detailed configuration, see page 103.

Set Vertical	To move the waveform up or down, turn the vertical position knob for each channel.			
Push the vertical position knob to				
reset the position to 0.		\quad	Run/Stop	The waveform can be moved modertically in both Run and Stop mode.
:---	:---			

Select Vertical
To change the vertical scale, turn the vertical SCALE knob; left (down) or right (up).

Range:
for 1 Mohm input $1 \mathrm{mV} /$ div~10V/div 1-2-5 increments impedance
for 50ohm input $1 \mathrm{mV} /$ div~1V/div 1-2-5 increments impedance

The vertical scale indicator for $1=100 \mathrm{mV}$ 是 each channel on the bottom of the display changes accordingly.

Automatic Measurement

The automatic measurement function measures and updates major items for Voltage/Current, Time, and Delay type measurements.

Measurement Items
Overview

Amplitude | Lifference between the |
| :--- |
| Llobal high value and the |
| global low value, measured |
| over the entire waveform or |
| gated region. (=high - low) |

Cycle Area	
ROVShoot	The Summation based on all data samples within the first cycle found in the gated
RPR	

Time
Measurement \quad Frequency

Period $\quad \downarrow \square$| Waveform cycle time. |
| :--- |
| $(=1 /$ Freq $)$ |

RiseTime

The time required for the leading edge of the first pulse to rise from the low reference value to the high reference value.

FallTime The time required for the falling edge of the first pulse to fall from the high reference value to the low reference value.

+ Width $\quad \tau_{\longleftrightarrow}$ Positive pulse width.
-Width $\quad \underset{\square}{\square}$ Negative pulse width.
Duty Cycle $\quad \ddagger \ddagger\left[\begin{array}{l}\text { Ratio of signal pulse } \\ \text { compared with whole cycle. }\end{array}\right.$

Add Measurement

The Add Measurement function allows you to add up to eight automatic measurement items on the bottom of the screen from any channel source.

Add Measurement Item	1. Press the Measure key.

3. Choose either a V/I, Time or Delay measurement from the side menu and choose the type of measurement you wish to add.

V/I Pk-Pk, Max, Min, Amplitude, (Voltage/ High, Low, Mean, Cycle Mean, Current) RMS, Cycle RMS, Area, Cycle Area, ROVShoot, FOVShoot, RPREShoot, FPREShoot

Time Frequency, Period, RiseTime, FallTime, +Width, -Width, Duty Cycle, +Pulses, -Pulses, +Edges, Edges, \%Flicker, FlickerIndex
Delay FRR, FRF, FFR, FFF, LRR, LRF, LFR, LFF, Phase
4. All of the chosen automatic measurements will be displayed in a window on the bottom of the screen. The channel number and channel color indicate the measurement source.
For the analog inputs: yellow $=\mathrm{CH} 1$, blue $=$ CH2.

Measure	
(1) Pk-Pk	1.01 V
(1) Amplitude	976 mV
(1) Frequency	104.2 kHz
(1) Dutycycle	50.16%
ALG $61 \sim$	62
(1) $=208 \mathrm{mV}$	2

Choose a Source The channel source for measurement items can be set either before or when selecting a measurement item.

$1!$Note

Source 2 is only applicable to Delay measurements.

Remove Measurement

Individual measurements can be removed at any time using the Remove Measurement function.

Remove Measurement Item

1. Press the Measure key.
2. Press Remove Measurement from the bottom menu.
3. Press Select Measurement and select the item that you want to remove from the measurement list.

Remove All Items Press Remove All to remove all the measurement items.

Indicator

1. Press the Measure key.

Measure
2. Push Indicators to visual measurement indicator. User can select measurement of interest from the added list and visualize the result corresponding to the waveform.

Only one measurement item can be selected to display per time.

Measurement Shortcuts

Users can use the Measure Shortcuts function to select the item to be measured, and then store the selected item in Shortcut 1~4, which can be selected to conduct measurements for the same product next time. Users just select the previously stored Shortcut $1 \sim 4$ without making new selections from Add measurement and all the measurement items will be displayed on the screen to improve the measurement efficiency.

1. Press the Measure key.

Measure
2. Press Meas. Shortcuts from the bottom menu.

Meas. Shortcuts
3. Current selected measurement items can be saved for quick use in the future by pressing Select
 key.

If User option is selected, the current measurement item will be changed to this item (User) when there is a change in the contents of shortcut key 1~4.

If Shortcut7~4 is selected, 4 sets of custom measurement item settings can be stored.

Save user to a shortcut

Press Save User to key and then select a shortcut to save the current measurement items.

Measure display Press Display key and then select whether the measurement item displays
 in landscape or portrait orientation or turn off the "Measure" display.

Transparent
Readout

Select transparent readout
background or turn off this function by press Transparent Readouts On/Off.

Gated mode

Some automatic measurements can be limited to a "gated" area between cursors. Gating is useful for measuring a magnified waveform or when using a fast time base. The Gated mode has three possible configurations: Off (Full Record), Screen and Between Cursors.

Set Gating Mode 1. Press the Measure key.
2. Press Gating from the bottom menu.

Gating Off
3. Choose one of the gating modes from the side menu: Off (full record), Screen, Between Cursors.

Cursors On
If Between Cursors is selected, the
Page 59
Screen cursor positions can be edited by using the cursor menu.

Display All mode

Display All mode shows and updates all items from Voltage and Time type measurements.

View
Measurement
Results

1. Press the Measure key.

Measure
Cursors
Off
(Full Record)

Screen

Between
3. Press Display All from the bottom
menu.

Display All
4. Press Source from the side menu and choose a measurement source.

$$
\begin{array}{ll}
\text { Range } & \begin{array}{l}
\mathrm{CH} 1 \sim \mathrm{CH} 2 \text { (or } \mathrm{CH} 4 \text { for 4CH } \\
\text { models), Math }
\end{array}
\end{array}
$$

5. The results of Voltage and Time type measurements appear on the display.

Remove
Measurements

To remove the measurement results, press OFF.

Delay
Measurements

Delay type measurements are not available in this mode as only one channel is used as the source. Use the individual measurement mode (page 47) instead.

High Low Function
Background The High-Low function is used to select the method for determining the value of the HighLow measurement values.

Auto	Automatically chooses the best high-low setting for each waveform when measuring.
Histogram	Uses histograms to determine the high-low values. This mode ignores any pre-shoot or overshoot values. This mode is particularly useful for pulse-type waveforms

Min-max \quad Sets the high-low values as the minimum or maximum measured values.

Set High-Low

1. Press the Measure key.

Measure
2. Press the More key.
3. Press High-Low from the bottom menu.

High-Low
Method
Auto Select
4. Select the type of High-Low settings from the side menu.

High-Low Settings Histogram, Min-Max, Auto

Restore Default To return to the default High-Low High-Low settings, press Set to Defaults.

Statistics

Background The Statistics function can be used to view a number of statistics for the selected automatic measurements. The following information is displayed with the Statistics function:

Value	Currently measured value
Mean	The mean value is calculated from a number of automatic measurement results. The number of samples used to determine the mean can be user-defined.
Min	The minimum value observed from a series of measured results for the selected automatic measurement items.
Max	The maximum value observed from a series of measured results for the selected automatic measurement items.
Standard	The variance of the currently measured value from the mean. The standard deviation equals the squared root of the variance value. Measuring the standard deviation can, for example, determine the severity of jitter in a signal.
The number of samples used to	
determine the standard deviation	
can be user-defined.	

2. Press the More key.
3. Select at least one automatic

Page 47 measurement.
4. Press Statistics from the bottom menu.

Statistics
5. Set the number of samples to be used in the mean and standard deviation calculations. Samples 2~1000
6. Press Statistics and turn Statistics on.

```
Statistics
On Off
```

7. The statistics for each automatic measurement will appear at the bottom of the display in a table.

To reset the standard deviation calculations, press Reset Statistics.

Reference Levels

| Background | The reference level settings determine the
 measurement threshold levels for some |
| :--- | :--- | :--- |
| measurements like the Rise Time measurement. | |

Panel Operation 1. Press the Measure key.

Measure

Reference
Levels
3. Set the reference levels from the side menu. Ensure the reference levels do not cross over.

High Ref $0.0 \% \sim 100 \%$
Mid Ref $0.0 \% \sim 100 \%$
$0.0 \% ~ \sim ~ 100 \%$
Low Ref $0.0 \% ~ \sim ~ 100 \%$
Default Settings
4. Press Set to Defaults to set the reference levels back to the default settings.

Cursor Measurement

Horizontal or vertical cursors are used to show the position and values of waveform measurements and math operation results. These results cover voltage, time, frequency and other math operations. When the cursors (horizontal, vertical or both) are activated, they will be shown on the main display unless turned off.

Use Horizontal Cursors

Panel Operation 1. Press the Cursor key once. Cursor
2. Press H Cursor from the bottom menu if it is not already selected.

or
Select

Range	Description	
\|		Left cursor $(\mathbf{1})$ movable, right cursor position fixed
\|		Right cursor $(\mathbf{2})$ movable, left cursor position fixed
Left and right cursor $(\mathbf{1}+\mathbf{2})$ movable together		

4. The cursor position information appears on the top left hand side of the

(1)	-12.5 us	-264 mV
(2)	12.5 us	232 mV
	25. Øus	496 mV
	$\mathrm{dV} / \mathrm{dt}$	$19.8 \mathrm{kV} / \mathrm{s}$

Cursor 1 Hor. position, Voltage/Current Cursor 2 Hor. position, Voltage/Current $\triangle \quad$ Delta (difference between cursors)
$\mathrm{dV} / \mathrm{dt}$ or $\mathrm{dI} / \mathrm{dt}$
5. Use the VARIABLE knob to move VARIAble the movable cursor(s) left or right.

The selected cursor(s) will move along the active waveform. To move along another waveform, select its corresponding channel and press the cursor key again to re-enter the cursor menu.

Select Units		To change the units of the horizontal position, press H Unit.	$\begin{aligned} & \text { H Unit } \\ & \text { s. } \mathrm{Hz} \%{ }^{\circ} \end{aligned}$
	Units S, Hz, \% (ratio), ${ }^{\circ}$ (phase)		
Phase or Ratio Reference		To set the 0% and 100% ratio or the 0° and 360° phase references for the current cursor positions, press Set Cursor Positions As 100\%.	Set Cursor Positions As 100\%
Example			

FFT
FFT cursors can use different units. For FFT details, see page
 68.

$\mathrm{dV} / \mathrm{dt}$ or d / dt

Example

XY Mode
XY mode cursors measure a number of X by Y measurements. See page 81.

(1) (X) Versus 2 (Y)	1		2	\triangle
	t:	-245ns	545ns	790ns
	$y:$	$\begin{gathered} 72.0 \mathrm{mV} \\ -120 \mathrm{mV} \end{gathered}$	$\begin{aligned} & 248 \mathrm{mV} \\ & 16.0 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 176 \mathrm{mV} \\ & 136 \mathrm{mV} \end{aligned}$
$\xrightarrow[80]{\text { Polar }}$	日:	-59.0 ${ }^{139 \mathrm{~V}}$	$\begin{aligned} & 248 \mathrm{mV} \\ & 3.69^{\circ} \end{aligned}$	$\begin{aligned} & 222 \mathrm{mV} \\ & 37.6^{\circ} \end{aligned}$
	x 4	-8.64mVV	3.96 mVV	23.9mWV
Ratio	- + ¢	-1.66V/V	$64.5 \mathrm{mv/v}$	$772 \mathrm{mv/V}$

Cursor 1 Time, rectangular, polar coordinates, product, ratio.
Cursor 2 Time, rectangular, polar coordinates, product, ratio.
$\triangle \quad$ Delta (difference between cursors)
Example

Use Vertical Cursors

Panel Operation/ 1. Press the Cursor key twice.
Range

\[\)| 2. Press $V \text { Cursor from the bottom }$ |
| :--- |
| menu if it is not already selected. | 3. When the V Cursor is selected,

\]

repeatedly pressing the V Cursor
key or the Select key will toggle
which vertical cursor is selected.

Range
...-...... Upper cursor movable, lower cursor position fixed
.----.-.- Lower cursor movable, upper
—— cursor position fixed
$=$
Upper and lower cursor movable together
4. The cursor position information appears on the top left hand side of the

\square	$74.0 n \mathrm{n}$	10.00 V
0	280 ns	$2-800 \mathrm{mV}$
	206 ns	800 mV
	$\mathrm{dV} / \mathrm{dt}$	$-3.88 \mathrm{mV} / \mathrm{s}$

\square, \bigcirc Time: cursor 1, cursor 2
1,2 Voltage/Current: cursor1, cursor2
$\triangle \quad$ Delta (difference between cursors)
$\mathrm{dV} / \mathrm{dt}$ or $\mathrm{dI} / \mathrm{dt}$
5. Use the VARIABLE knob to move VARIABLE the cursor(s) up or down.

FFT
FFT has different content. For FFT details, see page 68.

\square	544.00 MHz	$(1)-6.39 \mathrm{~dB}$
0	746.00 MHz	$2-104 \mathrm{~dB}$
	202.00 MHz	98.4 dB
	$\mathrm{~d} / \mathrm{dt}$	$-487 \mathrm{ndB} / \mathrm{Hz}$

Frequency/Time: cursor1, cursor2 dB/V: cursor1, cursor2
$\triangle \quad$ Delta (difference between cursors) d / dt

Example

Cursor Mark (On/off)

The information of cursor is displayed on cursor when the Cursor Mark function is activated.

Math Operation

Basic Math Overview \& Operators

Background	The Math function performs basic math functions (addition, subtraction, multiplication, division) on the input signals or the reference waveforms. The resultant waveform will be shown on the screen in real-time.
Addition (+)	Adds the amplitude of two signals.
	Source \quad CH1~4, Ref1~4
Subtraction (-)	Extracts the amplitude difference between two signals.
	Source \quad CH1~4, Ref1~4
Multiplication (\times)	Multiplies the amplitude of two signals.
	Source \quad CH1~4, Ref1~4
Division (\div)	Divides the amplitude of two signals.
	Source \quad CH1~4, Ref1~4

Addition/Subtraction/Multiplication/Division

Panel Operation 1. Press the Math key.

Math bezel.

MATH

2. Press the Math key on the lower
3. Select Source 1 from the side

Source 1
CH1 menu.
Range CH1~4, Ref1~4
4. Press Operator to choose the math operation.

Operator
$+-x \div$
Range $\quad+,-, \times, \div$
5. Select Source 2 from the side menu.

Source 2
CH2
Range CH1~4, Ref1~4
6. The math measurement result appears on the display. The vertical scale of the math waveform appears at the bottom of the screen.

From left: Math function, source1, operator, source2, Unit/div

Position and Unit To move the math waveform vertically, press the Position key from

Position
(0) 0.880iv the side menu and use the VARIABLE knob to set the position.

$$
\text { Range } \quad-12.00 \mathrm{Div} \sim+12.00 \mathrm{Div}
$$

To change the unit/div settings, press Unit/div, then use the VARIABLE knob to change the unit/div.

The units that are displayed depend on which operator has been selected, and whether the probe for the selected channel has been set to voltage or current.

Operator:	Unit/div:
Multiplication	VV, AA or W
Division	V/V, A/A
Addition/Subtraction	V or A

Turn Off Math To turn off the Math result from the display, press the Math key again.

FFT Overview \& Window Functions
$\left.\begin{array}{ll}\hline \text { Background } & \begin{array}{l}\text { The FFT function performs a Fast Fourier } \\ \text { Transform on one of the input signals or the } \\ \text { reference waveforms. The resultant spectrum will } \\ \text { be shown on the screen in real-time. Four types of } \\ \text { window function are available: Hanning, } \\ \text { Hamming, Rectangular, and Blackman, as } \\ \text { described below. }\end{array} \\ \hline \text { Hanning } & \begin{array}{l}\text { Frequency resolution }\end{array} \\ & \begin{array}{l}\text { Amplitude resolution }\end{array} \\ & \text { Suitable for.... }\end{array} \quad \begin{array}{l}\text { Not good } \\ \text { Frequency measurement on } \\ \text { periodic waveforms }\end{array}\right]$.

	Suitable for....	Frequency measurement on periodic waveforms
Rectangular	Frequency resolution	Very good
	Amplitude resolution	Bad
	Suitable for....	Single-shot phenomenon (this mode is the same as having no window at all)
Blackman	Frequency resolution	Bad
	Amplitude resolution	Very good
	Suitable for....	Amplitude measurement on periodic waveforms
Note	For more complete measures and functions in the frequency domain of a signal, please also refer to the Spectrum Analyzer section of the GDS-3000A series on page 226.	
FFT Operation		
Panel Operation	1. Press the Math key	y. MATH
	2. Press FFT from the bottom menu to select a FFT display mode.	
	3. FFT contains up to display methods.	to 3 FFT Overlaid
		FFT Only
		FFT Split
		FFT
		FFT Overlaid

FFT-overlaid The time domain waveform overlaps with the FFT waveform.

FFT-only Only FFT display is shown.

FFT-split
The time domain waveform is shown in the upper section, whereas the FFT display is shown in the lower section.

4. Select the Source from the side menu.
Range \quad CH1~4, Ref $1 \sim 4$
5. Press the Vertical Units key from

Vertical Units dBV RMS the side menu to select the vertical units used.

Range Linear RMS, dBV RMS
6. Press the Window key from the side menu and select the window

Window
Hamming type.

Range Hanning, Hamming, Rectangular, and Blackman.
7. The FFT result represents the frequencydomain representation of a signal. Hence, the horizontal scale changes from time to frequency, and the vertical scale from voltage/current to $\mathrm{dB} / \mathrm{RMS}$.

Position and
Scale

To move the FFT waveform vertically, press Vertical until the Div parameter is highlighted and then use the VARIABLE knob.

$$
\text { Range } \quad-12.00 \mathrm{Div} \sim+12.00 \mathrm{Div}
$$

To select the vertical scale of the FFT waveform, press Vertical until the $d B$ or voltage parameters are highlighted

Vertical 20dB 2.80Div and then use the VARIABLE knob.

$$
\begin{array}{ll}
\text { Range } & 2 \mathrm{mV} \sim 1 \mathrm{kV} \text { RMS (Linear RMS), } 1 \sim 20 \\
& \mathrm{~dB}(\mathrm{~dB} \text { VRMS) }
\end{array}
$$

Horizontal Position and Scale	To move the FFT waveform horizontally, press Horizontal until the Frequency parameter is highlighted and then use the VARIABLE knob.		Horizonta $100 \mathrm{MHz} / \mathrm{div}$ 500. BMHz
	Range	$0 \mathrm{~Hz} \sim$ half of the samp frequency	
	To select FFT wave repeatedly is highligh VARIABL	horizontal scale of the m, press Horizontal til the Hz /div paramete and then use the nob.	$\begin{gathered} \text { Horizontal } \\ 100 \mathrm{MHz} / \mathrm{div} \\ 500.0 \mathrm{MHz} \end{gathered}$

Advanced Math Overview

Background The advanced math function allows complex math expressions to be created based on the input sources, reference waveforms or even the automatic measurements available from the Measure menu (see page 43).
An overview of each of the major parameters that can be used in the advanced math function are shown below:

Expression	Displays the function expression as it is created.
Source	Selects the source signal.
	Source \quad CH1 ~ 4, Ref1 ~ 4

Function Adds a mathematical function to the expression.

	Function	Intg, Diff, log, Ln, Exp, Sqrt, Abs, Rad, Deg, Sin, Cos, Tan, Asin, Acos, Atan
Variable	Adds a user-specified variable to the expression.	
	Source	CH1~4, Ref1~4
Operator	Adds an operator or parenthesis to the function expression.	
	Operator	$\begin{aligned} & +,-, *, /,(,),!(,<,>,<=,>=,==,!=, \\ & \|\mid, \& \& \end{aligned}$
Figure	Adds a value to the expression.	
	Figure	Integers, floating point, or floating point with exponent values.
Measurement	Adds automatic measurements to the expression. Not all automatic measurements are supported.	
	Measurement	Pk-Pk, Max, Min, Amp, High, Low, Mean, CycleMean, RMS, CycleRMS, Area, CycleArea, ROVShoot, FOVShoot, Freq, Period, Rise, Fall, PosWidth, NegWidth, Dutycycle, FRR, FRF, FFR, FFF, LRR, LRF, LFR, LFF, Phase, RPRFShoot, FPREShoot, +Pulses, -Pulses, +Edges, -Edges

Advanced Math Operation

Panel Operation 1. Press the Math key.

MATH

Advanced

 Math3. Press Edit Expression.

Edit
Expression
4. The Edit $\mathrm{f}(\mathrm{x})$ screen appears. $\mathrm{CH} 1+\mathrm{CH} 1$ is shown in the expression box as an example at startup.

5. Press Clear to clear the expression entry area.
6. Use the VARIABLE knob and the

VARIABLE Select key to create an expression.

Use the VARIABLE knob to highlight a source, function, variable, operator, figure or measurement in orange.

Press the Select key to make the selection.

If a particular parameter is grayed out, it indicates that the particular parameter is not available at that time.

Back Space
7. To delete the last parameter press Back Space.
8. When the expression is complete,
press OK Accept.

Accept
9. Load recent expression: It loads the previous expression setting.

Recent Expression

Example:
$\mathrm{CH} 1+\mathrm{CH} 2$

Set the VAR1 \& VAR2
10. Press VAR1 or VAR2 to set VAR1/VAR2 if they were used in the expression created previously.
11. Use the numerical keypad on the front panel to set the value of the selected digit.

12. Use the VARIABLE knob to set the exponent of the variable. Input number via pressing the numerical keypad followed by pressing the Enter to confirm.
Exponent
7
Press "Menu Off" key to exit.

	13. Press тепи off to finish editing VAR1 or VAR2.	Menu Off
Vertical Position and Scale	14. Press Unit/div and use the VARIABLE knob to set the vertical scale of the math waveform.	Unit/div D 200 mv
	15. Press Position and use the VARIABLE knob to set the vertical position of the math waveform on the display.	Position O. 日0Div
Clear Advanced Math	To clear the advanced math result from the display, press the Math key again.	

Advanced

CONFIGURATION

Acquisition 80
Select Acquisition Mode 80
Show Waveform in XY Mode 81
Set the Record Length 84
Segmented Memory Acquisition 85
Segments Display 86
Set the Number of Segments 87
Run Segmented Memory 88
Navigate Segmented Memory 89
Play Through Each Segment 90
Measurement on Segments 91
Segment Info 94
Horizontal View 96
Move Waveform Position Horizontally 96
Select Horizontal Scale 97
Select Waveform Update Mode 97
Zoom Waveform Horizontally 99
Play/Pause 101
Vertical View (Channel) 103
Move Waveform Position Vertically 103
Select Vertical Scale. 104
Select Coupling Mode 104
Input Impedance 105
Invert Waveform Vertically 105
Limit Bandwidth 106
Fine Scale 108
Expand by Ground/Center. 109
Select Probe Type 110
Select Probe Attenuation Level 111
Set the Deskew 111
Bus Key Configuration 113
Bus Display 113
Serial Bus Overview 114
UART Serial Bus Configuration 116
$\mathrm{I}^{2} \mathrm{C}$ Serial Bus Interface 118
Serial Bus Interface 119
Parallel Bus 122
Input Configuration 122
Threshold Configuration 123
Bus Encoding 124
Parallel Bus Event Table 124
Adding a Label to the Parallel Bus 125
CAN Serial Bus Interface 127
LIN Serial Bus Interface. 128
Bus Encoding 129
Threshold configuration 130
Serial Bus Event Tables 131
Event Tables Format 133
Adding a Label to a Bus 134
Using Cursors with the Serial Bus 136
Trigger 138
Trigger Type Overview 138
Trigger: types and sources 140
Trigger Parameter Overview 140
Setup Holdoff Level. 147
Setup Trigger Mode 148
Using the Edge Trigger 148
Using Advanced Delay Trigger. 150
Using Pulse Width Trigger 151
Using Video Trigger 153
Pulse Runt trigger 155
Using Rise and Fall Trigger. 156
Using the Timeout Trigger 157
Using the Bus Trigger 159
UART BUS Trigger Settings 159
I $^{2} \mathrm{C}$ Bus Trigger Settings 161
SPI Bus Trigger Settings 164
CAN Bus Trigger 165
LIN Bus Trigger 168
Parallel Bus Trigger 170
Using the Logic Trigger. 171
Search 175
Configuring Search Events 175
Copying Search Event To/From Trigger Events 177
Search Event Navigation 177
Save Search Marks 178
Setting/Clearing Single Search Events 179
FFT Peak 179
System Settings 183
Select Menu Language 183
View System Information 183
Erase Memory 184
Erase Disk 184
Set Date and Time. 185
Probe Compensation Frequency 186
QR Code Reader Function 186
Display 188
Display Waveform as Dots or Vectors 188
Ruler On/Off 188
Set the Intensity Level 189
Select Display Graticule 192
Freeze the Waveform (Run/Stop) 193
Turn Off Menu 193
ARBITRARY WAVE GENERATOR 194
Arbitrary Wave Generator Operation 195
Overview 195
Rear Panel 195
AWG Display Overview 196
Generator Connection 196
Output Setup 197
Select the Active Channel 197
Turn the Output On for the Selected Channel 198
Setting the Load Impedance. 198
Setting the Phase 198
GEN1 and GEN2 Setup 199
Selecting a Waveform 199
Waveform Settings 200
AM Modulation 202
FM Modulation 205
FSK Modulation 207
Sweep 208
Manage Arbitrary Waveforms 210
Create New ARB Waveform 210
Edit an Existing ARB Waveform 212
Load ARB Waveform 219
Save ARB Waveform 220
Coupling and tracking waveforms settings 222

Acquisition

The Acquisition process samples the analog input signals and converts them into digital format for internal processing.

Select Acquisition Mode

Background \begin{tabular}{l}
The acquisition mode determines how the

samples are used to reconstruct a waveform.

\qquad| This is the default acquisition |
| :--- |
| mode. Every sample from each |
| acquisition is used. |

\qquad| Only the minimum and |
| :--- |
| maximum value pairs for each |
| acquisition interval (bucket) are |
| used. This mode is useful for |
| catching abnormal glitches in the |
| signal. |

\hline
\end{tabular}

Hi Resolution Performs boxcar averaging on the samples. This reduces white noise and increases the vertical resolution of the waveform.

Average Multiple acquired data is averaged. This mode is useful for drawing a noise-free waveform. To select the average number, use the VARIABLE knob.
Average number: $2,4,8,16,32$, 64, 128, 256 and 512

1. Press the Acquire key.
2. To set the Acquisition mode, press Mode on the bottom menu.

Show Waveform in XY Mode

Background The XY mode maps the voltage of channel 1 to the voltage of channel 2. In 4 channel models, the voltage of channel 3 is mapped to the voltage of channel 4 . This mode is useful for observing the phase relationship between waveforms.

Reference waveforms can also be used in XY mode. Ref1 is mapped to Ref2 and Ref3 is mapped to Ref4. Using the reference waveforms is the same as using the channel input waveforms.

4. Press $X Y$ from the bottom menu.

XY

5. Choose Triggered $X Y$ from the side menu.

Trigged
XY
$\mathrm{X}-\mathrm{Y}$ mode is split into two windows. The top window shows the signals over the full time range. The bottom window shows XY mode.

To move the XY waveform position, use the vertical position knob: Channel 1 knob moves the XY waveform horizontally and Channel 2 knob moves the XY waveform vertically. Similarly, the X 2 and Y 2 axis can be positioned using the channel 3 and channel 4 vertical position knobs.

The horizontal position knob and horizontal Scale knob can still be used under the XY mode.

Turn Off XY Mode To turn off XY mode, choose OFF (YT) mode.

OFF(YT)

Cursors and XY Cursors can be used with XY mode. Page 59
Mode
See the Cursor chapter for details.
Persistence The persistence function allows the GDS-3000A to mimic the trace of a traditional analog oscilloscope. A waveform trace can be configured to "persist" for designated amount of time.

Panel Operation 6. Press the Acquire menu key.

Acquire

Persistence
 248ms

 the Persistence menu button on the bottom bezel.8. Use the VARIABLE knob to select a persistence time.

$$
\text { Time } \quad \text { Auto, } 16 \mathrm{~ms} \sim 4 \mathrm{~s} \text {, Infinite, Off }
$$

Clear Persistence It clears the Persistence effect.

Set the Record Length

Background The number of samples that can be stored is set by the record length. Record length is important in an oscilloscope as it allows longer waveforms to be recorded.

The maximum record length for the GDS-3000A SERIES depends on operating mode. The table below describes the record lengths that are available for each mode.

Limitation
$\left.\begin{array}{|lllllll|}\hline \text { Record Length } & \text { lk } & \text { 10k } & \text { 100k } & \text { 1M } & \text { 10M } & \text { 100M } \\ \hline \text { 200M } \\ \hline \text { Single Window } & \checkmark & \checkmark & \checkmark & \checkmark & \checkmark & \checkmark \\ \checkmark \\ \text { Zoom } & x & \checkmark & \checkmark & \checkmark & \checkmark & \checkmark \\ \checkmark \\ \text { FFT } & \checkmark & \checkmark & \checkmark & \checkmark & x & x\end{array}\right) x$

1. Press the Acquire key.

2. Press the Record Length key on the bottom menu and choose the record length.

Record length $1 \mathrm{k}, 10 \mathrm{k}, 100 \mathrm{k}, 1 \mathrm{M}, 10 \mathrm{M}, 200 \mathrm{M}$
The sampling rate may also be changed when the record length is changed.

Segmented Memory Acquisition

The advanced segmented memory utility allows the scope memory to be divided into different segments. Each time the scope is triggered, it only acquires data for one segment of memory at a time. This allows you to optimize the scope memory to only perform signal acquisition during important signal events.

For example, for a signal with a number of pulses, normally the oscilloscope will acquire the signal until the acquisition memory of the scope is filled up and then it will re-arm the trigger and then capture again. This could result in a number of events not being captured or captured at a less-than-desired resolution (depending on the horizontal scale and sampling rate). However, the segmented memory function would effectively allow you to capture more of the signal than you would otherwise. The diagrams below illustrate this point.

Normal acquisition mode example:

Segmented memory acquisition example:

As shown above, the memory is divided into segments to increase the number of events that can be effectively captured with the same acquisition memory. Also notice that the scope doesn't need to rearm the trigger between each segment, this makes the segmented memory function especially useful for high speed signals. The time between each segment is also recorded so that accurate signal timing can also be measured.
The segmented memory function also supports automatic measurements for each segment or statistics for all the captured segments.

The advanced Segment Memory Utility is available for both analog and digital channels.

Segments Display

Progress Indicator	Segments: 10/10 Indicates the number of segments that have to been captured relative to the set number of segments.
Run/Stop Indicator	\squareStop: The segments have finished acquiring or have been stopped. Run: The scope is ready to acquire segments.

Set the Number of Segments

Background	Before the Segment function can be used, set the trigger settings as appropriate for the signal you wish to use. The number of segments that can be used depends wholly on the record length. See page 84 to set the record length.	
$!_{\text {Note }}$	Segment supports up to 1M points record length.	
	Record length	Number of segments
	1000 pt.	$1 \sim 490,000$
	10k pt.	$1 \sim 49,000$
	100k pt.	$1 \sim 4,900$
	$1 \mathrm{M} \mathrm{pt}$.	$1 \sim 490$

Panel Operation 1. Press the Acquire key. Acquire
2. Press Segments on the bottom menu.

Segments

3. Press Select Segments and set the number of segments from the side

Select

Segments menu.

$$
\text { Num of Seg } \quad 1 \sim 490,000 \text { (record length }
$$ dependent)

Set to Maximum	Sets to the maximum number

Set to Minimum Sets to 1 segment

The Select Segments icon is only available when Segments = OFF or when Segments is in the STOP mode (see the section below).

Run Segmented Memory

Background Before the Segmented Memory function can be used, set the trigger settings as appropriate for the signal you wish to use. See page 138 for configuring the trigger settings.

Run Segments 1. Toggle Segments On from the bottom menu.

2. The scope will automatically start acquiring segments. The progress of the segmented memory capture is shown in the Progress Indicator.
3. The Run Indicator will be shown when in the Run mode and the Segments icon will also indicate that the function is in run mode.

4. When the scope has finished acquiring segments, press Segments Run to toggle the mode to the Segments Stop mode.

Alternatively, the Run/Stop key can be pressed.

5. The Stop Indicator will be shown when in the Stop mode.

Segment (Stop)icon
The scope is now ready to navigate or analyze the acquired segments.

Rerun Segmented 6. To rerun the segments, press the Segments Stop Acquisition key to toggle the mode back to the Segments Run mode.

Alternatively, press the Run/Stop
key again.

7. Repeat steps 3 and 4 in the section above when the segmented acquisition has completed.

Navigate Segmented Memory

Background	After the segmented memory acquisitions have been captured you can navigate through each segment one at a time.
Operation	1.Press Select Segments from the bottom menu. This key will beSelect Segments

2. To navigate to the segment of interest, press Current Seg from

Current Seg

- the side menu and use the VARIABLE knob to scroll to the segment of interest.
Alternatively, the Set to Minimum and Set to Maximum keys can be used to jump to the first and last segment respectively.

3. The position in time of the selected segment relative to the time of the first segment is shown in the Segments Time key.

Play Through Each Segment

Background \quad| When all the segments have been acquired, the |
| :--- |
| play/pause key can be used to play back through |
| each segment. |

Operation 1. Make sure the scope is in Segments Stop mode. See page 88 for details.
2. Press the Play/Pause key to run through the acquired segments in numerical order.

- Press the Play/Pause key again to pause the playback.
- When the scope has played through to the last segment, pressing the Play/Pause key again will play through each segment again in reverse order.

Measurement on Segments

Background	The Segmented memory function can be used in conjunction with the automatic measurements configured in the Measurement menu (see page 43). Please note that Digital channels measurements cannot be used in conjunction with the segmented memory.
Modes	Segments Measure
This function will either perform statistics calculations on the segments or tabulate a list of the measurement results for all the segments.	
Segments Info	Provides configuration information common for all the acquired memory segments.

Segments	The Segments Measure function allows you to veasure
view automatic measurements for the segments in statistical bins or as a list displaying the result of each automatic measurement.	

Statistics	This function will bin the measurement results of a single automatic measurement into a user-defined number of bins.
	This enables the user to easily view the distribution of the measurement results for a large
number of segments.	

To use automatic measurements with the segmented memory, automatic measurements must first be selected from the Measure menu before the segmented memory function is run. Note that Digital channels cannot use this function.

Setup	Press the Measure key and select any single source measurement from the Add Measurement menu.
See page 47 for details on how to add automatic measurements.	
Operation	1.Press Analyze Segments from the Segments menu. Analyze Segments

This key will only be available in the Stop mode.
2. Press Segments Measure.
3. Select either the statistics or the measurement list from the side menu.

4. The statics table or measurement list appears on the display.

Note that the more segments that you have, the longer it will take to calculate the statics or list the measurement results.
5. For statistic measurements, press Plot
 Source to choose which automatic measurement to use for the statistics calculations. The statistics for only one automatic measurement can be viewed at a time.
6. For the measurement list, press

Source and select the source channel for measurement.

CH1

Range $\quad \mathrm{CH} 1 \sim \mathrm{CH} 4$

Statistics Results This function will bin the measurement results of the selected automatic measurement into a userdefined number of bins.

Setup
7. To select the number of bins for the statistics, press Divided by and

Divided by
10 select the number of bins with the Variable knob.

Example:
Statistics

Measurement
List
Setup

Puts all the measurement results for a segment in a list.
9. Press Select and use the VARIABLE knob to scroll through

Select
1 each segment.

Segment Info

Operation

1. Press Analyze Segments from the bottom menu.

Analyze
Segments

Note
This key will only be available in the Stop mode.
2. Press Segments Info.
3. A table showing all general setting information for the segmented memory acquisitions is shown on the display.

Info: Sample rate, Record length, Horizontal, Vertical

Segments Info
Samplerate: 5GSa/s
Record Length: 100k points
Horizontal: 7,167,944ns @ 2us/div
Vertical: © 0.000V @ 100mV/div

Horizontal View

This section describes how to set the horizontal scale, position, and waveform display mode.

Move Waveform Position Horizontally

Panel Operation	The horizontal position knob moves 〈POSITION〉
the waveform left/right.	

As the waveform moves, a position indicator on the top of the display indicates the horizontal position of the waveform in memory.

Horizontal
Position

1. Pushing the horizontal position knob will also reset the position to zero.
2. It is available to use the numerical keypad to input a desired horizontal position.

Horizontal Position 0.000005

Run Mode In Run mode, the memory bar keeps its relative position in the memory since the entire memory is continuously captured and updated.

Select Horizontal Scale

Select Horizontal To select the timebase (time/div), Scale turn the horizontal Scale knob; left (slow) or right (fast).

Range $\quad 1 \mathrm{~ns} / \mathrm{div} \sim 1000 \mathrm{~s} /$ div, 1-2-5 increment
The timebase indicator updates as the horizontal scale is adjusted.

Run Mode In Run mode, the memory bar and waveform size keep their proportion. When the timebase becomes slower, roll mode is activated (if the trigger is set to Auto).

Stop Mode In Stop mode, the waveform size changes according to the scale.

Select Waveform Update Mode
Background The display update mode is switched automatically or manually according to the timebase and trigger.

Zoom Waveform Horizontally

Background When in Zoom mode, the screen is split into 2 sections. The top of the display shows the full record length, while the bottom of the screen shows the normal view.

Panel Operation 1. Press the Zoom key.

2. The Zoom mode screen appears.

Horizontal
Position
0.00000 s

VARIABLE Position knob.
VARIABLE
The horizontal position will be shown on the Horizontal Position icon.

Zoom To increase the zoom range, use the

Move the Zoom
Window

Use the Horizontal Position knob to pan the zoom window horizontally.

To reset the zoom position, press the Horizontal Position knob.
<POSITION>

Push to Zero

The position of the zoom window, relative to the horizontal position is shown at the bottom of the screen next to the Zoom timebase.

Scroll Sensitivity	To alter the scrolling sensitivity of the zoom window, press the Zoom Position key to toggle the scrolling sensitivity
Pins Coarse	

Reset the Zoom	To reset both the zoom and	 \& Horizontal
Posizition to 0s		
Position	\& H POS to 0s.	

Exit \quad| To go back to the original view, press |
| :--- |
| the Zoom key again. |

Play/Pause

Background The Play/Pause key can be used to play through signals in the Zoom mode.

Note
If the Segmented memory function is turned on, pressing the play pause key will play through memory segments. See page 90 for more information.

Panel Operation 1. Press the Play/Pause menu key.

2. The scope will go into the Zoom Play mode and begin to scroll through the acquisition (from left to right).

The full-record length waveform will be shown at the top and the zoomed section will be shown at the bottom. The Play/Pause indicator shows the play status.

Zoom	To increase the zoom range, use the horizontal Scale knob.
The zoom time base at the bottom of the screen will change accordingly.	
Scroll Speed	To alter the scrolling speed of the zoom window, press the Zoom Position key to toggle the scrolling speed.
Sensitivity	Position Fine Coarse

Alternatively, use the horizontal position knob to control the scroll speed.

- Turning the Horizontal knob determines the speed and direction of the scrolling.

Reset the Zoom Position	To reset both the zoom position and horizontal position, press Reset Zoom \& H POS to 0s.	 H Position to 0s
Pause	Press the Play/Pause key to pause or resume playing the waveform.	

Reverse Direction Press the Play/Pause key when at the end of the record length to play back
 through the waveform in reverse.

Exit To exit, press the Zoom key.

Vertical View (Channel)

This section describes how to set the vertical scale, position, and coupling mode.

Move Waveform Position Vertically

Panel Operation

1. To move the waveform up or down, turn the vertical position knob for each channel.

POSITION

2. As the waveform moves, the vertical position of the channel indicator appears. Press the lower-right More key from the bottom menu and the vertical position will be shown within the "position/Set to 0".

View or Set the
Vertical Position
3. Press a channel key followed by pressing More key and the
vertical position is shown in the ()Position $/ \boldsymbol{\pm}$ Set to 0 soft key.

Position/
Set to 0
96.00日mV
4. To change the position, press $\boldsymbol{\omega}$

Position / $\mathbf{\pm}$ Set to 0 to reset the vertical position or turn the vertical position knob to the desired level or press the numerical keypad to directly input a desired value of vertical or position.

Run/Stop Mode	The waveform can be moved vertically in both Run and Stop mode.
Select Vertical Scale	
Panel Operation	To change the vertical scale, turn the vertical SCALE knob; left (down) or right (up).
	The vertical scale indicator on the bottom left of the display changes accordingly for the specific channel.
	Range $1 \mathrm{mV} /$ div $\sim 10 \mathrm{~V} /$ div. 1-2-5 increments
Stop Mode	In Stop mode, the vertical scale setting can be changed.
Select Coupling Mode	
Panel Operation	1. Press a channel key.
	2. Press Coupling repeatedly to Coupling toggle the coupling mode for the chosen channel.
Range	DC coupling mode. The whole portion (AC and DC) of the signal appears on the display.

AC coupling mode. Only the AC portion of the signal appears on the display. This mode is useful for observing AC waveforms mixed with DC signals.

Ground coupling mode. The display shows only the zero voltage level as a horizontal line.

Input Impedance

Background The input impedance of the GDS-3000A series has 2 types of Impedance: $1 \mathrm{M} \& 50$. The impedance is displayed in the channel menu.

View Impedance 1. Press the Channel key.
2. Press Impedance repeatedly to toggle between the impedance settings. There are 2 types of Impedance: 1 M and 50Ω.
3. Select 50Ω. A small ohm icon " Ω " will be displayed on the screen.

Impedance $1 M \Omega 50 \Omega$
2. 日0V (1)

Invert Waveform Vertically

Panel Operation 1. Press the Channel key.
2. Press Invert to toggle Invert On or

Limit Bandwidth

Background \quad| Bandwidth limitation puts the input signal into a |
| :--- |
| selected bandwidth filter. |
| This function is useful for cutting out high |
| frequency noise to see a clear waveform shape. |
| The bandwidth filters available are dependent on |
| the bandwidth of the oscilloscope model. |
| Also refer to the digital filter application, page |
| 322. |.

Panel Operation 1. Press the Channel key.

50Ω BW

CH1

Bandwidth Full menu. A small bandwidth icon " B " will be displayed on the screen.

$2.00 \mathrm{~V}^{\mathrm{B}}$

3. Choose a bandwidth ${ }^{*}$ from the side menu. *Depending on the bandwidth of the oscilloscope.
Range 350 MHz models: Full, 20MHz, $100 \mathrm{MHz}, 200 \mathrm{MHz}$
650MHz models: Full, 20MHz, $100 \mathrm{MHz}, 200 \mathrm{MHz}, 300 \mathrm{MHz}$

The tolerance of bandwidth limit is $\pm 10 \%$

Fine Scale

Panel Operation 1. Press the Channel key.

2. Press More key from the bottom menu

More

50Ω BW

CH 1

3. Use the VARIABLE knob and the VARIABLE numerical keypad to input a desired value of vertical position.

or

Expand by Ground/Center

Background \quad| When the voltage scale is changed, the Expand |
| :--- |
| function designates whether the signal expands |
| from the center of the screen or from the signal |
| ground level. Expand by center can be used to |
| easily see if a signal has a voltage bias. Expand by |
| ground is the default setting. |

Panel Operation 1. Press a channel key.

2. Press Expand repeatedly to toggle between expand By Ground and

Expand
By Ground Center.

Range By Ground, By Center
Example If the vertical scale is changed when the Expand function is set to ground, the signal will expand from the ground level*. The ground level does not change when the vertical scale is changed.

If the vertical scale is changed when the Expand function is set to center, the signal will expand from the center of the screen. The ground level will suit to match the signal position.
*Or from the upper or lower edge of the screen if the ground level is off-screen.

Expand by Center

Select Probe Type

Background A signal probe can be set to voltage or current.
Panel Operation 1. Press the Channel key.
2. Press More key from the bottom menu

More
3. Press Probe from the side menu.
4. Press the Voltage/Current soft-key to toggle between voltage and current.

Select Probe Attenuation Level

Background An oscilloscope probe has an attenuation switch to lower the original DUT signal level to the oscilloscope input range, if necessary. The probe attenuation selection adjusts the vertical scale so that the voltage level on the display reflects the real value on a DUT.

Panel Operation 1. Press the Channel key.

$50 \Omega \mathrm{BW}$

 CH12. Press More key from the bottom menu
3. Press Probe from the side menu.
4. Press Attenuation on the side menu and use the VARIABLE knob to set the attenuation.

Alternatively, press Set to 10X.
Range $\quad 1 \mathrm{mX} \sim 1 \mathrm{kX}(1-2-5$ step $)$
The attenuation factor adds no influence on the real signal. It just changes the voltage/current scale on the display.

Set the Deskew

Background The deskew function is used to compensate for the propagation delay between the oscilloscope and the probe.

Panel Operation 1. Press one of the Channel keys.

2. Press More key from the bottom menu

3. Press Deskew on the side menu and use the VARIABLE knob to set the deskew time.

Alternatively, press Set to 0s to reset the deskew time.

Range $\quad-50 \mathrm{~ns} \sim 50 \mathrm{~ns}, 10 \mathrm{ps}$ increments
5. Repeat the procedure for another channel if necessary.

Bus Key Configuration

The Bus key is used to configure the Serial bus inputs. The Bus menu also features event tables to track and save your bus data. The Bus key is used in conjunction with the Bus trigger (page 159) to decode serial bus signals.

Bus Display

Start Bit/Start of Frame

Stop Bit/End of Frame

The Start bit is shown as an open bracket (Serial bus data only).
The Stop bit is shown as a closed bracket (Serial bus data only).

Data
 40

Data packets/frames/words can be shown in Hex or Binary. The color of the bus data indicates the type of data or the channel the data is coming from, depending on the bus type.
UART: \quad Color of packet $=$ Color of source channel.
$I^{2} \mathrm{C}: \quad$ Color packet $=$ SDA source channel.
CAN: Purple = Error frame, Data length control (DLC), Overload.
Yellow = Identifier.
Cyan = Data.
Orange $=$ CRC.
Red $=$ Bit stuffing error

$$
\begin{array}{ll}
\text { LIN: } & \text { Purple }=\text { Break, Sync and Checksum } \\
& \text { errors, Wakeup } \\
& \text { Yellow = Identifier, Parity } \\
& \text { Cyan = Data } \\
& \text { Red }=\text { Error type }
\end{array}
$$

Error $\quad 0$ If there is an error/missing acknowledgement in Indicator/ Missing Ack

Bus Indicator

Trigger
Configuration decoding the data, a red error indicator will be shown.

The Bus indicator shows the bus position. The active bus is shown with a solid color. The VARIABLE knob can be used to horizontally position the Bus indicator when it is active.

B Active bus	B Activated bus
(solid indicator)	(transparent indicator)

Shows the bus trigger (B) and the Trigger On settings. Please see page 159.

B Start

Serial Bus Overview

The Serial Bus includes support for 6 common bus interfaces UART, $I^{2} \mathrm{C}, \mathrm{SPI}$, Parallel, CAN and LIN. Each interface is fully configurable to accommodate variations in the basic protocols.
Each input can be displayed as binary, hexadecimal or ASCII. An event table can also be created to aid in debugging.

UART Universal Asynchronous Receiver Transmitter. The UART bus is able to accommodate a wide range of various common UART serial communications.
The UART serial bus software is suitable for a number of RS-232 protocol variants.
Inputs Tx, Rx
Threshold $\quad \mathrm{x}, \mathrm{Rx}$

	Configuration	Baud rate, Parity, Packets, End of packets, Input polarity
	Trigger On	Tx Start Bit, Rx Start Bit, Tx End of Packet, Rx End of Packet, Tx Data, Rx Data, Tx Parity Error, Rx Parity Error
$1^{2} \mathrm{C}$	Inter Integrated Circuit is a two line serial data interface with a serial data line (SDA) and serial clock line (SCLK). The R/W bit can be configured.	
	Inputs	SCLK, SDA
	Threshold	SCLK, SDA
	Configuration	Addressing mode, Read/Write in address
	Trigger On	Start, Repeat Start, Stop, Missing Ack, Address, Data, Address/Data
SPI	The SPI (Serial Interface Peripheral) bus is fully configurable to accommodate the wide variety of SPI interfaces. This bus is only available on 4 channel models.	
	Inputs	SCLK, SS, MOSI, MISO
	Threshold	SCLK, SS, MOSI, MISO
	Configuration	SCLK edge, SS logic level, Word size, Bit order
	Trigger On	SS Active, MOSI, MISO, MOSI\&MISO
CAN	The CAN (Controller Area Network) bus is a 2wire, message-based protocol.	
	Inputs	CAN Input
	Threshold	CAN Input
	Configuration	Signal Type, Bit Rate

Trigger On Start of Frame, Type of Frame, Identifier, Data, Id \& Data, End of Frame, Missing Ack, Bit Stuffing Err.
LIN \(\left.\left.\begin{array}{ll}The LIN (Local Interconnect Network) bus is used

to decode a wide range of common LIN

configurations.

Inputs \& LIN Input\end{array}\right\} $$
\begin{array}{ll}\text { Threshold } & \text { LIN Input }\end{array}
$$\right\}\)| ConfigurationBit Rate, LIN Standard, Include
 Parity Bits with Id |
| :--- |
| Trigger OnSync, Identifier, Data, Id \& Data,
 Wakeup Frame, Sleep Frame, Error |

UART Serial Bus Configuration

The UART bus menu is designed to decode RS-232 and other common RS-232 variants such as RS-422, RS-485. The software configuration is also flexible enough to decode the many proprietary protocols based on RS-232.

Background Basic RS-232 protocol uses single-ended data transmissions. The signal voltage levels can be high ($\pm 15 \mathrm{~V}$) and employ active low signaling.

High speed variants of RS-232, such as RS-422 and RS-485 use differential signaling and commonly employ low voltage differential signals with active high signaling.

Universal Asynchronous Receiver/Transmitter (UART) or RS-232 driver/receiver ICs commonly used for embedded applications typically use active high signaling with standard IC signal levels.

Operation
 1. Connect each of the bus signals $(T x, R x)$ to one of the oscilloscope's analog or digital channels. Connect the ground potential of the bus to one of the probes' ground clip if you are using the analog channels or to the ground connector of the Digital card if you are using the digital channels.

2. Press the BUS key.

BUS

3. Press Bus from the bottom menu and choose the UART serial bus
 on the side menu.

Define Inputs
4. Press Define Inputs from the bottom menu.

Define

Inputs
5. From the side menu choose the Tx Input and the $R x$ Input source and the signal polarity.

$\mathrm{Tx} \quad \mathrm{OFF}, \mathrm{CH} 1 \sim \mathrm{CH} 4$ or OFF	
$\mathrm{Rx} \quad \mathrm{OFF}, \mathrm{CH} 1 \sim \mathrm{CH} 4$ or OFF	
Polarity	Normal (High $=0$), Inverted (High $=1$)

Configuration The Configure key sets the baud rate, number of data bits and parity.
6. Press Configure from the bottom menu.

Configure
19200-8-N
7. From the side menu select the Baud rate, Data bits, Parity, Packets and End of Packet bits.

Fine-tuned	$50,75,110,134,150,300,600,1200$,
Baud Rate	$1800,2000,2400,3600,4800,7200$,
	$9600,14400,15200,19200,28800$,
	$31250,38400,56000,57600,76800$,
	$115200,128000,230400,460800$,
	$921600,1382400,1843200,2764800$
Data Bits	$5,6,7,8,9$
Parity	Odd, Even, None
Packets	On, Off
End of	$00(\mathrm{NUL}), \mathrm{OA}(\mathrm{LF}), \mathrm{OD}(\mathrm{CR})$,
Packet (Hex)	$20(\mathrm{SP})$, FF

$I^{2} \mathrm{C}$ Serial Bus Interface

The $\mathrm{I}^{2} \mathrm{C}$ bus is a 2 wire interface with a serial data line (SDA) and serial clock line (SCLK). The I ${ }^{2} \mathrm{C}$ protocol supports 7 or 10 bit addressing and multiple masters. The scope will trigger on any of the following conditions: a start/stop condition, a restart, a missing acknowledge message, Address, Data or Address \& Data frames. The $I^{2} \mathrm{C}$ trigger can be configured for 7 or 10 bit addressing with the option to ignore the R / W bit as well as triggering on a data value or a specific address and direction (read or write or both).

Panel operation 1. Connect each of the bus signals (SCLK, SDA) to one of the oscilloscope's analog or digital channels. Connect the ground potential to one of the probes' ground clip if you are using the analog channels.

2. Press the Bus key.

3. Press Bus from the bottom menu and choose $I^{2} C$ from the bottom

Define Inputs
4. Press Define Inputs from the bottom menu.

Define
Inputs
5. From the side menu choose the SCLK input and the SDA Input.

SCLK	$\mathrm{CH} 1 \sim \mathrm{CH} 4$
SDA	$\mathrm{CH} 1 \sim \mathrm{CH} 4$

Include R/W in address

 To configure whether you want the R / W bit to be included in theInclude R/W in address Yes address, press Include R / W in address and set to Yes or No in the side menu.
R/W Bit Yes, No

Serial Bus Interface

The serial peripheral interface (SPI) is a full duplex 4 wire synchronous serial interface. The 4 signals lines: Serial clock line (SCLK), slave select (SS), Master output/slave input (MOSI, or SIMO) and the Master input/slave output (MISO, or SOMI). The word size is configurable from $4 \sim 32$ bits (fine-tuned). The SPI triggers on the data pattern at the start of each framing period. This bus is only available on 4 channel models.

Panel operation 1. Insert each of the bus signals (SCLK, SS, MOSI, MISO) to one of the oscilloscope channels.

2. Press Bus from the bottom menu and choose $I^{2} C$ from the bottom menu.

Define Inputs
3. Press Define Inputs from the lower menu.

Define
Inputs
4. From the side menu choose the $S C L K, S S$,

MOSI and MISO inputs.

SCLK	CH1~4
SS	CH1~4
MOSI	OFF, CH1 ~ 4
MISO	OFF, CH1~4

Set the Threshold 5. Press Threshold from the bottom menu. channel DSO models.
6. Press Select from the side menu. Choose SCLK, SS, MOSI or MISO line thresholds.

Range SCLK, SS, MOSI, MISO
7. Press Threshold from the side menu and configure the threshold.
8. Press the Choose

Preset to select the following settings

TTL, 5.0V CMOS, 3.3 CMOS, 2.5V COMS, ECL -1.3V, PECL

User	17.6 V	Choose Preset User
TTL	1.4 V	
5.0V CMOS	2.5 V	
3.3 V CMOS	1.65 V	
2.5V CMOS	1.25	
ECL	-1.3V	
PECL	3.7V	
OV	0 V	

figuration	The Configure menu sets the data line logic level,
	SCLK edge polarity, word size and bit order.

9. Press Configure from the bottom menu.
10. From the side menu select SCLK edge, SS logic level, word Size and Bit order.

SCLK	rising edge - falling edge \urcorner
SS	Active High, Active Low
Word Size	$4 \sim 32$ bits (fine-tuned)
Bit Order	MS First, LS First

Bus Display	Press Bus Display from the bottom menu and Hex or Binary from the side menu.	Bus Display

	Range \quad Hex, Binary	
Event Table	11. Press Event Table from the bottom menu.	Event Table
	12. Press Event Table from the side menu to toggle the event table On or Off. Event \quad On, Off	Event Table On Off

13. To save the event table, press Save Event Table.

Parallel Bus

Input Configuration

Background \quad| The digital channels can be configured as a |
| :--- |
| parallel bus. The number of bits that define the |
| bus as well as which bit is used as the bus clock |
| can also be configured. |

The trigger should also be set to parallel bus. Please see page 164 for details.

Panel Operation 1. Press the Bus key.

BUS

2. Press the Bus soft-key and select Parallel from the side menu.
3. Press Define Inputs from the bottom menu.

Number of Data Bits B

Define
Inputs
Bus Parallel
4. Press Number of Bits from the side menu and select the number of bits for the data bus.

By default the bus is assigned bits D0, D1, D2 and so on up to the last bit.
5. You may also assign a bit as a clock. This bit will be one of the bits in the bus. To add a clock bit, press Clock Edge and select type of clock edge. Selecting Off will disable the clock bit.
6. If you wish to define which channels are assigned to the bus, press Select Signal from the side menu and select the bit that wish to assign.

Channel 1 is currently assigned to bit 7.	Bit	[75	1.48 V	Select Signal Bit 7
	Bit 6	61	1.40 V	
	Bit 5	5	1.40 V	
	Bit 4	4	1.48 V	Select Ch

7. Next, press Select Ch and select which channel is assigned to the bit selected above.

8. Repeat steps 6 and 7 for any remaining bits and for the clock, if enabled.

Threshold Configuration

Background The threshold levels for the parallel bus can be set to either a user-defined threshold level or to preset threshold.

Operation

1. Press Thresholds from the bottom menu.

Thresholds
2. Press Select from the side menu and select a digital channel.

Select
7 7.
Bit 7
3. Press Choose Preset to select a preset logic threshold for the selected channel.

Logic Type	Threshold
TTL	1.4 V
5.0 V CMOS	2.5 V
3.3 V CMOS	1.65 V
2.5 V CMOS	1.25 V

ECL	-1.3 V
PECL	3.7 V
0 V	0 V

4. Press Threshold to set a user defined threshold for the selected

Threshold 1.48V input. Range $\pm 10 \mathrm{~V}$

Bus Encoding

Background	The bus that is displayed on the screen or in the event tables can be set to either hex or binary formats.
Operation	1.Press Bus Display from the Bus menu and choose either Hex or Binary from the side menu.Bus Display

Parallel Bus Event Table

Event Table	The parallel bus event table lists when each data event on the bus occurred. The data is displayed as either hex or binary, depending on the bus display settings.
Event tables can be saved to disk in a CSV format. The files will be named "Event_TableXXXX.CSV", where XXXX is a number from 0000 to 9999. See page 133 for details.	
Operation	1. Press Event Table from the bottom menu.
2. Press Event Table from the side menu to turn the event table on or off.	Event Table On 0ff

3. To save the event table, press Save Event Table.

Save
Event Table

Use the VARIABLE knob to scroll through the event table.

Example
Time of event

Adding a Label to the Parallel Bus
Background A label can be added to the parallel bus.

Panel Operation	1. To add a label to the bus, press Edit Labels from the Parallel Bus menu.	$\begin{aligned} & \text { Edit } \\ & \text { Label } \end{aligned}$
	2. To choose a preset label, Press User Preset from the side menu	User Preset ACK

Labels	ACK, AD0, ADDR, ANALOG, BIT,
	CAS, CLK, CLOCK, CLR, COUNT,
	DATA, DTACK, ENABLE, HALT,
	INT, IN, IRQ, LATCH, LOAD, NMI

Edit Label
3. Press Edit Character to edit the current label.
4. The Edit Label window appears.

5. Use the VARIABLE knob to highlight a character.

Press Enter Character to select a number or letter.

Enter Character

Press Back Space to delete a character.

Press Editing Completed to create the new label and return to the previous menu.

This key must be pressed to save the label, even for the preset labels.

Press Cancel to cancel the editing and return to the Edit Label menu.

Cancel

The label will appear next to the bus indicator.
Below, the label "BUS_1" was created for the parallel bus.

CAN Serial Bus Interface

The controller area network (CAN) bus is a half duplex 2 wire synchronous serial interface. The CAN bus is a multi-master communication system that relies on arbitration to solve contention issues. The GDS-3000A series supports both CAN 2.0A and 2.0B. The CAN bus uses two wires, CAN-High and CAN-Low. These wires are voltage inverted, and as such, the GDS-3000A Series only needs one wire, CAN-High or CAN-Low for decoding.

Panel operation 1. Connect the bus signal (CAN Input) to one of the oscilloscope's analog or digital channels. Connect the ground potential to one of the probes' ground clip if you are using the analog channels or to the ground connector of the Digital card if you are using the digital channels.

2. Press the Bus key.

BUS

3. Press Bus from the bottom menu and choose the CAN serial bus.
4. Press Define Inputs from the lower menu.

Define Inputs

5. From the side menu choose the CAN Input inputs and the signal type.

CAN Input CH1~CH4
Signal Type CAN_H, CAN_L, Tx, Rx.

$1!$Note

The Sample Point soft-key indicates the sampling position of each bit. This parameter is fixed.

Bit Rate
The Bit Rate menu sets the bit rate of the bus. The bit rate is usually tied to the bus length.
6. Press Bit Rate from the bottom menu and set the bit rate.

Bit Rate 125808

Bit Rate 10 kbps , 20kbps, 50 kbps , 125 kbps , $250 \mathrm{kbps}, 500 \mathrm{kbps}, 800 \mathrm{kbps}, 1 \mathrm{Mbps}$

LIN Serial Bus Interface

The local interconnect network (LIN) bus is a single wire interface.

Panel operation 1. Connect the bus signal (LIN Input) to one of the oscilloscope's analog or digital channels.
Connect the ground potential to one of the probes' ground clip if you are using the analog channels or to the ground connector of the Digital card if you are the using digital channels.

2. Press the Bus key.

3. Press Bus from the bottom menu and choose the $L I N$ serial bus.

LIN

Define Inputs	4. Press Define Inputs from the lower menu.			Define Inputs
	5. From the side menu choose the LIN input and the polarity of the bus.			
	LIN Input CH1~CH4			
	Polarity		$\begin{aligned} & \text { Normal }(\text { High }=1) \text {, } \\ & \text { Inverted }(\text { High }=0) \end{aligned}$	
\triangle Note	The Sample Point soft-key indicates the sampling position of each bit. This parameter is fixed.			
Configuration	The Configure menu sets the bit rate, the LIN standard and the parity options for the Id frame.			
	6. Press Configure from the bottom menu.			$\begin{aligned} & \text { Configure } \\ & \text { v/0. Parity } \end{aligned}$
	7. From the side menu select configuration items.			
	Bit Rate		$1.2 \mathrm{kbps}, 2.4 \mathrm{kbps}, 4.8 \mathrm{kbps}$, $9.6 \mathrm{kbps}, 10.417 \mathrm{kbps}, 19.2 \mathrm{kbps}$	
	LIN Standard		V1.x, V2.x, Both	
	Include Parity On, Off Bits with Id			

Bus Encoding

Background The bus that is displayed on the screen or in the event tables can be set to either hex or binary formats.

Operation
Press Bus Display from the Bus menu and choose either Hex or Binary from

Bus
Display the side menu.

Threshold configuration

Background The threshold levels for the Serial buses can be set to either a user-defined threshold level or to preset threshold.

Set the Threshold 1. Press Threshold from the bottom menu.

Thresholds
2. Press Select from the side menu to choose one of the lines that are

Tx configured for your type of bus.

UART	Tx, Rx
$I^{2} \mathrm{C}$	SCLK, SDA
CAN	CAN_H, CAN_L, Tx, Rx
LIN	LIN Input

3. Press Choose Preset to select a preset logic threshold.
Logic Type Threshold
TTL 1.4 V
5.0 V CMOS $\quad 2.5 \mathrm{~V}$
3.3 V CMOS 1.65 V
2.5V CMOS 1.25 V

ECL -1.3V
PECL $\quad 3.7 \mathrm{~V}$
OV OV
4. Press Threshold to set a user defined threshold for the

Threshold
(c) 17.6 V currently selected input.

For the analog channels, the threshold level depends on the vertical scale :

Scale	Range	Scale	Range
10V/Div	$\pm 290 \mathrm{~V}$	$50 \mathrm{mV} /$ Div	$\pm 5.2 \mathrm{~V}$
5V/Div	$\pm 270 \mathrm{~V}$	$20 \mathrm{mV} /$ Div	$\pm 580 \mathrm{mV}$
2V/Div	$\pm 33 \mathrm{~V}$	$10 \mathrm{mV} /$ Div	$\pm 540 \mathrm{mV}$
1V/Div	$\pm 29 \mathrm{~V}$	$5 \mathrm{mV} /$ Div	$\pm 520 \mathrm{mV}$
$500 \mathrm{mV} /$ Div	$\pm 27 \mathrm{~V}$	$2 \mathrm{mV} /$ Div	$\pm 508 \mathrm{mV}$
$200 \mathrm{mV} /$ Div	$\pm 5.8 \mathrm{~V}$	$1 \mathrm{mV} /$ Div	$\pm 504 \mathrm{mV}$
$100 \mathrm{mV} /$ Div	$\pm 5.4 \mathrm{~V}$		

Serial Bus Event Tables

Background	The serial bus event tables list when each data event on the bus occurred. The data is displayed as either hex or binary, depending on the bus display settings.
Event tables can be saved to disk in a CSV format. The files will be named "Event_TableXXXX.CSV", where XXXX is a number from 0000 to 9999. See page 133 for details.	
Operation	1. Press Event Table from the bottom menu.
2. Press Event Table from the side menu to turn the event table on or off.	Event Table On Off

Use the VARIABLE knob to scroll through the event table.

Data Detail ($I^{2} \mathrm{C}$ only)
3. To view the data at a particular address in more detail, turn Data Detail On. This is only available On Off for the $\mathrm{I}^{2} \mathrm{C}$ bus.

Detail On, Off
Use the VARIABLE knob to scroll through the Data Detail event table.

Save Event Table 4. To save the event table, press Save Event Table. The Event table will

Save
Event Table be saved to the current file path in a CSV format. See page 133 for details.
Use the VARIABLE knob to scroll through the event table.

Example:
UART Event table
Time of trigger Tx Rx Errors

Example:
$I^{2} C$ Event table

Event Tables Format

Each bus type can have an event table saved containing each bus event as a .CSV file. An event is defined as a packet/frame/word
or associated set of data being successfully read according to the specific operating conditions of each bus (Start of frame, acknowledgements, checksums, etc ...). The data associated with each event and the time of each event is recorded.

File Type Each event table is saved as Event_TableXXXX.CSV into the designated file path. Each event table is numbered sequentially from 0000 to 9999 . For example the first event table will be saved as Event_Table0000.CSV, the second as Event_Table0001.CSV, and so on.

Event Table Data Each event table saves a timestamp of each event relative to the trigger as well as the data in each frame/packet at the time of an event. The frame/ packet data is saved in HEX format.

The table below lists in order the data saved for each event table.

UART Time, Tx frame data, $R x$ frame data, Errors.

$1^{2} \mathrm{C}$	Time, Repeat Start, Address, Data, Missing Ack.
CAN	Time, Identifier, DLC, Data, CRC, Missing Ack.
LIN	Time, Identifier, Parity, Data, Checksum, Errors.

Adding a Label to a Bus

Background	A Label can be added to the buses. This label will appear next to the bus indicator on the left hand- side of the display.	
Panel Operation	1. To add a label to the bus, press Edit Labels from the Bus menu.	Edit Label

2. To choose a preset label, Press User Preset from the side menu and choose a label.

ACK

Labels ACK, AD0, ADDR, ANALOG, BIT, CAS, CLK, CLOCK, CLR, COUNT, DATA, DTACK, ENABLE, HALT, INT, IN, IRQ, LATCH, LOAD, NMI

Edit Label
3. Press Edit Character to edit the current label.

Edit
Character
4. The Edit Label window appears.

5. Use the VARIABLE knob to highlight a character.

Press Enter Character to select a number or letter.

Press Back Space to delete a character.

Press Editing Completed to create the new label and return to the

Editing
Completed previous menu.

This key must be pressed to save the label, even for the preset labels.

Press Cancel to cancel the editing and return to the Edit Label menu.

Cancel

6. The label will appear next to the bus indicator.

Below, the label "ACK" was created for the bus.

B ACK The bus is labeled as ACK
Remove Label Press Label Display to toggle the label on or off.

Label Display
On Off

Using Cursors with the Serial Bus

Background | The cursors can be used to read bus values at any |
| :--- |
| position. |

Ensure that one of the serial buses has been selected and is activated.

Panel Operation 1. Press the Cursor key. Horizontal cursors appear on the display.
2. When cursor mark is selected "ON"

Cursor Mark On Off

Press the H Cursor soft-key and select which cursor(s) you wish to position.

Left cursor ($\mathbf{(1)}$ movable, right
: cursor position fixed
Right cursor (2) movable, left cursor position fixed Left and right cursor ($\mathbf{1 + 2}$) movable together
3. The cursor position information appears on the top left hand side of the screen.

1	340 us	Addr: 0. 40
2	3.24 ms	Addr: 0×40
	A.90ms	

Example: $I^{2} \mathrm{C}$ cursors.
Cursor 1 Hor. position, Bus value(s)
Cursor 2 Hor. position, Bus value(s)
4. When cursor mark is selected "ON"

The cursor will mark readout directly on waveform.

5. Use the VARIABLE knob to move

VARIABLE the movable cursor(s) left or right.

6. Press the Cursor key twice. Vertical

Cursor cursors appear on the display.

Trigger

The trigger configures the conditions for when the GDS-3000A SERIES captures a waveform.

Trigger Type Overview

Edge | The edge trigger is the simplest trigger type. An |
| :--- |
| edge trigger triggers when the signal crosses an |
| amplitude threshold with either a positive or |
| negative slope. | Rising edge trigger

Delay The Delay trigger works in tandem with the edge trigger, by waiting for a specified time (duration) or number of events before the delay trigger starts. This method allows pinpointing a location in a long series of trigger events.

When using the delay trigger, the edge trigger source can be any one of the channel inputs, the EXT input or the AC line.

Delay trigger example (by event)

Delay trigger example (by time)

		Edge trigger Delay Source Delay time length First triggering point
Pulse Width	Triggers when the pulse width of the signal is less than, equal, not equal or greater than a specified pulse width.	
Video	Extracts a sync pulse from a video format signal, and triggers on a specific line or field.	
Pulse and Runt	Triggers on a "runt". A runt is a pulse that passes a specified threshold but fails to pass a second threshold. Both positive and negative runts can be detected.	
	A	Pulse
	B	Runt
		High threshold Low threshold
Rise and Fall (Slope)	Trigger on rising and or falling edges, below or over a specified rate. The threshold can also be specified.	
		Thresholds Rate (time)

Timeout Triggers when the signal stays high, low or either for a designated amount of time. The trigger level determines when a signal is high or low.

Bus
Triggers on several bus events.
Logic Triggers on specified logic levels or for specified clock edge. Logic trigger is only available for Digital channels.

Trigger: types and sources

Sources versus types	Trigger types	Trigger sources			
		Analog			Digital
		$\mathrm{CH} 1 \sim \mathrm{CH} 4$	EXT	AC Line	D0~D15
	Edge	\checkmark	\checkmark	\checkmark	\checkmark
	Delay	\checkmark	\checkmark	\checkmark	
	Pulse Width	\checkmark	\checkmark	\checkmark	\checkmark
	Video	\checkmark			
	Pulse \& Runt	\checkmark			
	Rise \& Fall (Slope)	\checkmark			
	Timeout	\checkmark	\checkmark	\checkmark	\checkmark
	Bus	$\checkmark *$			\checkmark
	Logic				\checkmark

*The source analog is assigned from the Bus menu.

Trigger Parameter Overview

All the following parameters are common for all the trigger types unless stated otherwise.

Trigger Source $\quad \mathrm{CH} 1 \sim 4 \quad$ Channel $1 \sim 4$ input signals

EXT	External trigger input signal Except for: Video, Pulse Runt, Rise \& Fall and Bus AC Line
AC mains signal	
	 Fall and Bus

Alternate Alternate between channel sources for the trigger source.

D0 ~ D15 Digital input channels
Except for: Video, Pulse Runt, Rise and Fall

EXT Probe For EXT trigger source only. Set the probe as either current or voltage.

Attenuation For EXT trigger source only. Attenuates the EXT trigger probe by an adjustable value.

Range $\quad 0.001 \mathrm{X} \sim 1000 \mathrm{X}$ 1-2-5 steps
Source Bus
UART UART bus

$I^{2} \mathrm{C}$	Inter-Integrated Circuit
CAN	Controller Area Network bus
LIN	Local Interconnect Network
SPI	Serial Peripheral Interface
Parallel	Parallel bus

The Source Bus is not configurable from the Trigger menu. The field is automatically filled according to the Bus menu configuration (see page 113).

Coupling (Edge, Delay, Timeout)	$\frac{\mathrm{DC}}{\mathrm{AC}}$	DC coupling.	
		AC coupling. Blocks DC components from the trigger circuits *.	
	HF reject	High frequency filter, above $70 \mathrm{kHz}^{*}$.	
	LF reject	Low frequency filter, below $70 \mathrm{kHz}^{*}$.	
	Reject noise	DC coupling with low sensitivity to reject noise.	
	*Parameter not applicable to digital channels.		
Slope (Edge, Delay, R \& Fall)	\bigcirc	Trigger on a rising edge.	
	\checkmark	Trigger on a falling edge.	
	\bigcirc	Either (either rising or falling edge).	
Trigger Level (Edge, Delay)	Level	Adjusts the trigger level manually using the Trigger LEVEL knob.	

Set to TTL Sets the trigger level to 1.4 V , suitable for 1.4V triggering on TTL signals.

Set to ECL - Sets the trigger to - 1.3 V . This is suitable 1.3V for ECL circuits.

Set to 50% User can push the trigger level knob to set directly the trigger level to 50% of the waveform amplitude.

Push for 50%

"-

Trigger On (Video)	Selects the trigger point in the video signal.	
Odd Field	NTSC: $1 \sim 263$	
		PAL/SECAM: $1 \sim 313$
	EDTV: $1 \sim 525(480 \mathrm{P}), 1 \sim 625(576 \mathrm{P})$	
	HDTV: $1 \sim 750(720 \mathrm{P}), 1 \sim 563(1080 \mathrm{i})$,	
		1~1125(1080P)
	Even Field	NTSC: $1 \sim 262$, PAL/SECAM: $1 \sim 312$
	HDTV: $1 \sim 562(1080$ i)	
	All Fields	Triggers on all fields.
	All Lines	Triggers on all lines.

Trigger On (Bus) Selects the conditions for the serial bus triggers.

UART Bus	Tx Start Bit, Rx Start Bit, Tx End of Packet, Rx End of Packet, Tx Data, Rx Data, Tx Parity Error, Rx Parity Error
I $^{2} \mathrm{C}$	Start, Repeat Start, Stop, Missing Ack, Address, Data, Address/Data
CAN	Start of Frame, Type of Frame, Identifier, Data, Id \& Data, End of Frame, Missing Ack, Bit Stuffing Err
LIN	Sync, Identifier, Data, Id \& Data, Wakeup Frame, Sleep Frame, Error

Data(Bus) Selects the conditions for the parallel bus trigger.
Parallel A Binary or Hexadecimal word.

Threshold	J几 $\square^{\text {S }}$ Sets the upper threshold limit.
(Pulse Runt)	

Threshold
(Rise \& Fall)

- L--- Low Sets the Low threshold.

Trigger When (Timeout)	Stays High	Triggers when the input signal stays high for a designated amount of time.
	Stays Low	Triggers when the input signal stays low for a designated amount of time.
Either	Triggers when the input signal stays high or low for a designated amount of time.	
Timer (Timeout)	4ns~10.0s	Sets the amount of time that a signal must stay high or low for the timeout trigger.

Setup Holdoff Level

Background The holdoff function defines the waiting period before the GDS-3000A starts triggering again after a trigger point. The holdoff function ensures a stable display if there are a number of points in a periodic waveform that can be triggered. Holdoff applies to all the triggering types except the trigger by bus.

Panel Operation 1. Press the trigger Menu key.

Menu

Holdoff
4.000ns Holdoff (or Mode/Holdoff) menu button on the bottom bezel.
3. Use the side menu to set the Holdoff time.

	Range \quad 4ns~10s Pressing Set to Minimum sets the Holdoff time to the minimum, 4ns.
Setup Trigger Mode	

Using the Edge Trigger

Panel Operation 1. Press the trigger Мепи key.

2. Press Type from the lower bezel
menu.

Type
Edge,
3. Select Edge from the side menu. The edge trigger indicator appears at the bottom of the display.

(1) f 叫 DC

From left: trigger source, slope, trigger level, coupling
4. Press Source to change the trigger source.

Source CH1
5. Use the side menu to select the trigger source type.

Range Channel $1 \sim 4$ (Alternate On/Off), EXT (Ext Probe: Volt/Current, Attenuation: $1 \mathrm{mX} \sim 1 \mathrm{kX}$, and AC Line.
6. Press Coupling from the bottom bezel menu to select the trigger

Coupling DC coupling or frequency filter settings.

Choose the coupling from the side menu.
Range DC, AC, HF Reject, LF Reject
7. Toggle Noise Rejection On or Off from the side menu.

Noise Reject
 On Off

Range On, Off
8. From the bottom menu press Slope to toggle the slope type.

Range Rising edge, falling edge, either
9. To set the external trigger level, select Level from the bottom bezel

Level QV menu (Not applicable for AC line source).
10. Set the external trigger level using the side menu.

	Analog channel Range	Set to TTL 1.4 V Set to ECL -1.3V Set to 50%		
	Digital channel Range	$-5.00 \mathrm{~V} \sim+5.00 \mathrm{~V}$		
		TTL	1.4 V	
		5.0V CMOS	2.5 V	
		3.3 V CMOS	1.65 V	
		2.5 V CMOS	1.25 V	
		ECL	-1.3V	
		PECL	3.7 V	
		0V	0 V	
\qquad Note	Setting the trigger level for a digital source will also change the threshold levels set in the Logic Analyzer menu (page 338).			
Using Advanced Delay Trigger				
Panel Operation	1. Set the edge trigger source. This will set the initializing trigger for the delay source.			Page 148
	2. Press the trigger Мепи key.			
	3. Press Type from the lower bezel menu.			Type Edge
	4. Select Delay from the side menu. The delay trigger indicator appears at the bottom of the display.			

(D) DC F B DC

From left: Delay trigger indicator (D), edge trigger (A), edge slope, edge level, edge coupling, delay trigger (B), delay slope, delay trigger level, delay coupling.
5. To set the delay source, press Source and select a source from the side menu.

Source $\mathrm{CH} 1 \sim \mathrm{CH} 4$, AC Line, EXT
6. Press Coupling from the bottom bezel menu to select the trigger coupling or frequency filter settings.

Choose the coupling from the side menu.
Range DC, AC, HF Reject, LF Reject
7. To set the delay press Delay from the bottom bezel.

Delay 4. 1000 ns
8. To Delay by Time (Duration), press Time from the side menu and set

Time
4.000 ns the delay time.

Range $\quad 4 \mathrm{~ns} \sim 10$ s (by time)
Set to minimum
9. To Delay by Event, press Event from the side menu and set the number of events.

Range $1 \sim 65535$ events
Set to Minimum

Using Pulse Width Trigger

Panel Operation 1. Press the trigger Menu key.
2. Press the Type key from the lower bezel menu.

Type Edge
3. Select Pulse Width from the side menu. The pulse width trigger indicator appears at the bottom of the display.

(1) $\overbrace{t}>4$. 日00ns DC

From left: source, polarity, when, coupling
4. Press Source from the lower bezel.

Source CH1
5. Use the side menu to select the pulse width trigger source.
Range Channel $1 \sim 4$ (Alternate On/Off), EXT (Ext Probe: Volt/Current, Attenuation: $1 \mathrm{mX} \sim 1 \mathrm{kX}$, and AC Line.
6. Press Polarity to toggle the polarity type.

Range Positive (high to low transition) Negative (low to high transition)
7. Press When from the lower bezel.

When $>4.000 \mathrm{n} 5$

Then use the side menu to select the pulse width condition and width.

Condition	$>,<,=, \neq$
Width	4 ns $\sim 10 \mathrm{~s}$

8. Press Threshold from the lower

Threshold bezel to edit the pulse width 1008nV threshold.

9. Set the threshold level using the side menu.			(1)	1088nW
Analog channel Range	Set to TTL 1.4 V Set to ECL -1.3V Set to 50\%			
Digital channel Range	$-5.00 \mathrm{~V} \sim+5.00 \mathrm{~V}$			
	TTL	1.4 V		
	5.0V CMOS	2.5 V		
	3.3 V CMOS	1.65 V		
	2.5 V CMOS	1.25 V		
	ECL	-1.3V		
	PECL	3.7 V		
	0V	0V		

\angle Note
Setting the trigger threshold for a digital source will also change the threshold levels set in the Logic Analyzer menu (page 338).

Using Video Trigger

2. Press the Type key from the lower bezel menu.

Type
Edge
3. Select Video from the side menu. The video trigger indicator appears at the bottom of the display.

(1) NTSC AL
 DC

From left: source, video standard, field, line, coupling
4. Press Source from the lower bezel.
5. Use the side menu to select the video trigger source.
Range \quad Channel 1~4
6. Press Standard on the bottom

Standard [NTSC]

Use the side menu to select the video standard.
Range NTSC, PAL, SECAM, EDTV (480P, 576P), HDTV (720P, 1080i, 1080P)
7. Press Trigger On to edit the video field and line.

Trigger On All Lines

Use the side menu to select the field and line.
Odd Field NTSC: 1 ~ 263
PAL/SECAM: $1 \sim 313$
EDTV: 1~525(480P), 1~625(576P)
HDTV: 1~750(720P), 1~562(1080i), 1~1125(1080P)

Even Field NTSC: 1~262
PAL/SECAM: 1 ~ 312
HDTV: 1~563(1080i)
All Fields Triggers on all fields.
All Lines Triggers on all lines.
8. Press Polarity to toggle the polarity type.

Range positive, negative

Pulse Runt trigger

Panel Operation 1. Press the trigger Menu key.

3. Select Others \rightarrow Pulse Runt from the side menu. The Pulse and Runt indicator appears at the bottom of the display.

G1 H 1V DC

From left: polarity, source, high/low threshold, threshold level, coupling
4. Press Source from the lower menu.

Use the side menu to select a source.
Range Channel 1~4 (Alternate On/ Off)
5. Press Polarity to toggle the polarity.

Range Rising edge, falling edge, either.
6. Press When from the lower menu.

When
$>4.000 n 5$
Then use the side menu to select the condition and width.

Condition	$>,<,=, \neq$
Width	$4 \mathrm{~ns} \sim 10$ s

7. Press Threshold from the lower bezel to edit the threshold for the upper and lower threshold.
8. Use the side menu to set the upper threshold.
```
Threshold
1 1V
-1v
```


Range $\quad-X X V \sim X X V$
9. Use the side menu to set the lower threshold.
 Range $\quad-X X V \sim X X V$

Using Rise and Fall Trigger

Panel Operation 1. Press the trigger Menu key.

2. Press the Type key from the lower bezel menu.

Type
Edge)
3. Select Others \rightarrow Rise and Fall from the side menu. The Rise and Fall indicator appears at the bottom of the display.

F[1) H	1 V	DC
L	-1V	

From left: slope, source, high/low threshold, threshold level, coupling
4. Press Source from the lower menu.

Use the side menu to select a source.
Range Channel 1~4 (Alternate On/Off)

	Press Slope from the bottom menu to toggle the slope.	$\Gamma^{\text {slope }} x$
	Rising edge, falling edge, either	
6. Press When from the lower menu.		$\begin{aligned} & \text { When } \\ & >4.000 \mathrm{~ns} \end{aligned}$
Then use the side menu to select the logic conditions and true or false status.		
Condition >, <, =, $=$		
Width 4ns ~ 10 s		
7. Press Threshold from the lower bezel to edit the High and Low threshold.		
Range High: -XXV \sim XXV		
Low: -XXV \sim XXV		

Using the Timeout Trigger

Panel Operation 1. Press the trigger Мепи key.
2. Press the Type key from the lower bezel menu.

Type
Edge
3. Select Others \rightarrow Timeout from the side menu. The Timeout indicator
 appears at the bottom of the display.

1)Timeout GV DC

From left: Source, Trigger type, threshold level, coupling
4. Press Source from the lower menu.

Use the side menu to select a source.
Range Channel 1~4 (Alternate On/Off), EXT (Ext Probe: Volt/Current, Attenuation: 1mX~1kX and AC Line.
5. Press Coupling from the bottom bezel menu to select the trigger coupling or frequency filter settings.

Choose the coupling from the side menu.
Range DC, AC, HF Reject, LF Reject
6. Toggle Noise Rejection On or Off from the Coupling side menu.

Coupling
DC -

$\substack{\text { Noise Re ject } \\ \text { On Off }}$

7. Press Trigger When from the lower menu.

> Trigger
> When
> Stalen High

Then use the side menu to select trigger conditions.

Condition Stays High, Stays Low, Either
8. Press Level from the lower bezel to set the trigger level.

Level
QV
9. Set the level using the side menu.
Analog Set to TTL 1.4V
channel Set to ECL -1.3V
Range
Set to 50%

Digital channel Range	$-5.00 \mathrm{~V} \sim+5.00 \mathrm{~V}$	
	$5 T L$	1.4 V
	5.0 V CMOS	2.5 V
	3.3 V CMOS	1.65 V
	2.5 V CMOS	1.25 V
	ECL	-1.3 V
	PECL	3.7 V
	0 V	0 V

Setting the trigger threshold for a digital source will also change the threshold levels set in the Logic Analyzer menu (page 338).
10. Press Timer from the lower bezel to set the timer time.

Timer
4.000ns

$$
\text { Range } \quad 4 \mathrm{~ns} \sim 10.0 \mathrm{~s}
$$

Using the Bus Trigger

The Bus trigger is used to trigger the oscilloscope on UART, I2C, SPI, CAN or LIN serial bus signals or on parallel bus data.

UART BUS Trigger Settings

The UART bus trigger conditions can be set at any time after the bus settings have been set to UART.

[^0]4. Press Others from the side menu and select Bus.

The Trigger on settings will be reflected on the Trigger Configuration icon.

B Tx Data

From left: Bus trigger, Trigger source
5. Press Trigger On and select the triggering condition for the UART

Trigger 0n Tx Data

Trigger On Tx Start Bit, Rx Start Bit, Tx End of Packet, Rx End of Packet, Tx Data, Rx Data, Tx Parity Error, Rx Parity Error

Trigger On - Tx If Tx Data or Rx Data was configured for the Data, Rx Data Trigger On setting, then the number of bytes and data can also be configured.
6. Press Data from the bottom menu.

7. Press Number of Bytes from the side menu and choose the number of bytes for the data.

UART 1~10 Bytes
8. Press Data from the side menu to
edit the triggering data.

Data
9. To edit the data, use the VARIABLE knob to highlight a binary or hex digit and press Select. Use the Variable knob to choose a value for the digit and
 press Select to confirm.

Binary	$0,1, \mathrm{X}$ (don't care)
Hex	$0 \sim \mathrm{~F}, \mathrm{X}$ (don't care)
ASCII	ASCII characters for the equivalent
	Hex characters 00 to FF

$1^{2} \mathrm{C}$ Bus Trigger Settings
 The $I^{2} C$ bus trigger conditions can be set at any time after the bus settings has been set to $I^{2} \mathrm{C}$.

Panel Operation 1. Set the Bus to $\mathrm{I}^{2} \mathrm{C}$ in the bus menu. Page 118
2. Press the Trigger Menu key.

Menu Type
Edge
4. Press Others from the side menu and select Bus.

The Trigger on settings will be reflected on the Trigger Configuration icon.

B Stop

From left: Bus trigger, Trigger source
5. Press Trigger On and select the triggering condition for the selected bus.

Trigger On Start, Repeat Start, Stop, Missing Ack, Address, Data, Address/Data

Trigger On - Data If Data or Address/Data was configured for the Trigger On setting, then the number of bytes, data and addressing mode ($\mathrm{I}^{2} \mathrm{C}$) can be configured.
6. Press Data from the bottom menu.

7. Press Number of Bytes from the side menu and choose the number of bytes for the data.
$1^{2} \mathrm{C} \quad 1 \sim 5$ Bytes
8. Press Addressing Mode to toggle between 7 and 10 bit addressing modes.

Addressing
Mode
7bit 18bit
9. Press Data from the side menu to edit the triggering data.

Data
10. To edit the data, use the VARIABLE knob to highlight a binary or hex digit and press Select. Use the VARIABLE knob to choose a value for the digit and

Select

Trigger On Address

If Address or Address/Data was configured for the Trigger On setting, then the triggering address must be configured.
11. Press Address on the bottom menu.

Address

Addressing
Mode
7bit 10bit between 7 and 10 bit addressing modes.

Choose
Preset General Call

	Address	Description	
	00000000	General Call	
	00000001	START Byte	
	0000 1XX X	Hs-mode	
	1010 XXX X	EEPROM	
	0000001 X	CBUS	
	Press Apply default add	eset to set the to the preset.	Apply Preset
$!$ Note	Presets are not available for Trigger On Address/Data.		
	14. Press Address from the side menu to manually edit the triggering address.		Address
	15. To edit the address, use the VARIABLE knob to highlight a binary or hex digit and press Select. Use the VARIABLE knob to choose a value for the digit and press Select to confirm.		
			Binary
			Xxxx xxxx
	Binary	X (don't care)	
	Hex	, X (don't care)	
Direction	16. Press Direction on the bottom menu and choose the direction from the side menu.		$\begin{gathered} \text { Direction } \\ \text { Write } \end{gathered}$
	Direction	Write, Read, Read or Write	

SPI Bus Trigger Settings

The SPI bus trigger conditions can be set at any time after the bus setting has been set to SPI.

Panel Operation 1. Set the Bus to SPI in the bus menu.

2. Press the Trigger Menu key.

3. Press Type from the bottom menu.

Type Edge
4. Press Others from the side menu and select Bus.

Pulse Runt	
Rise \& Fall	Video
Timeout	
Bus	Others
Logic	Bus

The Trigger on settings will be reflected on the Trigger Configuration icon.

B) MOSIRMISO

From left: Bus trigger, Trigger source
5. Press Trigger On and select the triggering condition for the SPI bus.

$$
\begin{aligned}
& \text { SPI SS Active, MOSI, MISO, } \\
& \text { MOSI\&MISO }
\end{aligned}
$$

Trigger On - Data If MOSI, MISO or MISO/MOSI was configured for the Trigger On setting, then the number of words and the data can be configured.
6. Press Data from the bottom menu.
7. Press Number of Words from the side menu and choose the number of words for the data.

```
Number of Words 1
```


Binary $0,1, \mathrm{X}$ (don't care)
Hex $\quad 0 \sim \mathrm{~F}, \mathrm{X}$ (don't care)

Select VARIABLE knob to highlight a binary or hex digit and press Select. Use the VARIABLE knob to choose a value for the digit and press Select to confirm.

Select

CAN Bus Trigger

The CAN bus trigger conditions can be set at any time after the bus setting has been set to CAN.
Panel Operation 1. Set the Bus to CAN in the bus Page 119
menu.
2. Press the Trigger Menu key.

Menu M
3. Press Type from the bottom menu.

4. Select Others \rightarrow Bus from the side menu. The Bus indicator appears at the bottom of the display.

The Trigger on settings will be reflected on the Trigger Configuration icon.

B Identifier

From left: Bus trigger, Trigger source
5. Press Trigger On and select the triggering condition for the selected bus.

Trigger On
 Type of
 Frame

Trigger On Start of Frame, Type of Frame, Identifier, Data, Id \& Data, End of Frame, Missing Ack, Bit Stuffing Err

Trigger On-Type of Frame
6. If Frame Type was configured for the Trigger On setting, then the type of frame can be configured from the side menu.

B Type of Frame

Type Data Frame, Remote Frame, Error Frame, Overload Frame

Trigger On Identifier
7. If Identifier/Id \& Data was configured for the Trigger On setting, select the format from the side menu.

Format Standard, Extended

8. Press Identifier from the side menu to set the identifier data.

Identifier
9. To edit the identifier, use the VARIABLE knob to highlight a binary or hex digit and press Select. Use the VARIABLE knob to choose a value for the digit and press Select to confirm.
Binary $\quad 0,1, \mathrm{X}$ (don't care)
Hex $\quad 0 \sim F, X$ (don't care)

	10. Press Direction on the bottom menu and select the CAN Direction from the side menu.	Direction Write
	CAN Direction Write, Read, Read or	or Write
Trigger On - Data	If Data/Id and Data was configured for the Trigger On setting, then the triggering data must be configured.	
	11. Press Data on the bottom menu.	Data
	12. Press Number of Bytes from the side menu and choose the number of bytes for the data.	Number of Bytes 1
	Bytes 1~8 Bytes	
	13. Press Data from the side menu to edit the triggering data.	Data
	14. To edit the data, use the VARIABLE knob to highlight a binary or hex digit and press Select. Use the VARIABLE knob to choose a value for the digit and press Select to confirm.	
		xxxx xxxx
	Binary 0, $1, \mathrm{X}$ (don't care)	Select
	Hex 0~F, X (don't care)	
	15. Press Trigger When from the side menu to choose the triggering condition for the data.	
	When $\quad=, \neq,<,>, \leq, \geq$	
	16. The oscilloscope will now trigger when the specified bus data matches the Trigger When conditions.	

LIN Bus Trigger

The LIN bus trigger conditions can be set at any time after the bus setting has been set to LIN.
 display.

B Sync

From left: Bus trigger, Trigger source
5. Press Trigger On and select the triggering condition for the selected bus.

Trigger On Sync, Identifier, Data, Id and Data, Wakeup Frame, Sleep Frame, Error.

Trigger On Identifier
6. If Identifier or Id \mathcal{E} Data was configured for the Trigger On setting, press Identifier from the bottom menu.
7. Press Identifier from the side menu to set the identifier data.

8. To edit the identifier, use the
VARIABLE knob to highlight a
binary or hex digit and press
Select. Use the VARIABLE knob to
choose a value for the digit and
press Select to confirm.
Binary $\quad 0,1, \mathrm{X}$ (don't care)
Hex $\quad 0 \sim \mathrm{Fxx}, \mathrm{X}$ (don't care)

Trigger On - Data If Data/Id and Data was configured for the Trigger On setting, then the triggering data must be configured.
9. Press Data on the bottom menu.

Data
10. Press Number of Bytes from the side menu and choose the number of bytes for the data.
Bytes $\quad 1 \sim 8$ Bytes
11. Press Data from the side menu to edit the triggering data.

Data
12. To edit the data, use the VARIABLE knob to highlight a binary or hex digit and press Select. Use the VARIABLE knob to choose a value for the digit and Binary press Select to confirm.

Binary	$0,1, \mathrm{X}$ (don't care)
Hex	$0 \sim \mathrm{~F}, \mathrm{X}$ (don't care)

13. Press Trigger When from the side menu to choose the triggering

Trigger When $\# \neq<>\leq \geq$ condition for the data.

When $\quad=, \neq,<,>, \leq, \geq$
14. The oscilloscope will now trigger when the specified bus data matches the Trigger When conditions.

Parallel Bus Trigger

The parallel bus trigger conditions can be set at any time after the bus setting has been set to parallel. The parallel bus can be set up to trigger on a specified data pattern.

Panel Operation 1. Set the Bus to parallel in the bus menu.
2. Press the Trigger Мепи key.

3. Press Type from the bottom menu.
4. Select Others \rightarrow Bus from the side menu. The Bus indicator appears at the bottom
 of the display.

(B) Data

From left: Bus trigger, Data source
5. Press Data from the bottom menu.
6. Press Data from the side menu to edit the triggering data.

Data
Data
 press Select to confirm.

Binary	$0,1, \mathrm{X}$ (don't care)
Hex	$0 \sim \mathrm{~F}, \mathrm{X}$ (don't care)

8. The oscilloscope will now trigger when the specified data appears on the bus.

Using the Logic Trigger

Background The digital channels can be set up to trigger on specified logic levels and for a specified clock edge.

For example the digital channels can be set to trigger on the rising edge of a clock signal when bit 1 of a digital channel is high and all other channels are ignored.

Panel Operation 1. Press the Trigger Мепи key.
2. Press Type from the bottom menu.

Type
Edge]
3. Select Others \rightarrow Logic from the side menu. The Logic indicator appears at the bottom
 of the display.

From left: Bits D15~D0
4. Press Define inputs from the bottom menu.

	Press Select on the side menu and select a channel.	[1]	clock	
		1	н	Select
		12	H	
		${ }^{3}$	H	
	Next, select a logic level for the selected channel, or set the selected channel as the clock signal.	4	x	
		5	x	
		${ }_{6}$		
		IT	x	
		${ }_{8}$	x	
		9	x	
		${ }^{1 \times 1]}$	x	
		III	x	
		12	\times	
	$\begin{array}{ll}\text { Logic } & \text { Clock, H } \\ & \text { Care (X) }\end{array}$	gh		

7. Repeat steps 5 to 6 for the remaining channels.
8. The chosen logic levels will be reflected in the trigger indicator at the bottom of the screen. The color of each channel, if active will also be displayed. If a channel is not turned on, it will be grayed-out

Example

[^1]\(\left.\left.\begin{array}{l}9. If a clock signal was defined,

press Clock Edge from the bottom

menu and select a clock transition.

At each clock transition a

comparison will be made.\end{array}\right] $$
\begin{array}{ll}\text { Clock Edge } & \text { Rising, Falling, Either }\end{array}
$$\right]\)	10. If no clock were defined, press
When from the bottom menu and	
choose the trigger timing	
conditions.	

11. The oscilloscope will now trigger when the specified logic appears among the digital channels.

Trigger Threshold	The trigger threshold levels for the digital channels can be assigned from a selected number Levels
of preset levels or a user-defined threshold level.	

The threshold levels that are set in this menu will replace the threshold levels that are set in the Logic Analyzer menu (page 338).
12. Press Thresholds from the bottom menu.

	Group	$\begin{aligned} & \text { D0~D3, D4~D7, D8~D11, } \\ & \text { D12~D15 } \end{aligned}$	

14. Press Choose Preset to select a preset logic threshold.

Logic Type Threshold
TTL 1.4 V
5.0V CMOS $\quad 2.5 \mathrm{~V}$
3.3 V CMOS 1.65 V
2.5V CMOS 1.25 V

ECL -1.3V
PECL $\quad 3.7 \mathrm{~V}$
OV 0 V
15. Press Threshold to set a user defined threshold.

Range	$\pm 5.00 \mathrm{~V}$

Search

The search feature can be used to search for events on the analog and digital input channels. The events that can be searched for are similar to the events that are used for the trigger system. The only difference is that the search feature uses the measurement threshold levels rather than the trigger level to determine events.

Configuring Search Events

Background Similar to configuring the trigger system, the Search events must first be configured before they can be found.

Luckily the trigger system configuration settings can also be used for the search events. The types of searches are listed below. Please note that a full description of the events can be found in the Trigger section on page 138.

Search Event Edge, Pulse Width, Runt, Rise and Fall Time, FFT Types Peak* and Bus.
*The FFT Peak search event doesn't have a trigger equivalent.

Panel Operation 1. Press the Search menu key.
2. Press Search from the bottom menu and turn the Search

Search

Search On function on.
3. Press Search Type from the bottom menu and select the type of

Search Type Runt search. The search events are configured in the same fashion as the trigger events.

Please see the trigger configuration settings for details:

Event Edge, Pulse Width, Runt, Rise/Fall
Types: Time, FFT Peak*, Bus
*No trigger equivalent.
4. Select the source from which to search events. Press Source from the bottom menu, and select the source.

Sources: $\mathrm{CH} 1 \sim \mathrm{CH} 4$, Math
5. To set the threshold levels for the search events (instead of the

Threshold 0. OOV
$-1.84 \mathrm{~V}$ trigger level that is used for trigger events), use the threshold soft-key from the bottom menu.

The search function can support up to 10,000 events, however only 1,000 events can be displayed on screen at once.

Copying Search Event To/From Trigger Events

Background	As the trigger system and search feature have similar settings, their settings can be used interchangeably by using the Copy functions.
Interchangeable	Edge, Pulse Width, Pulse Runt, Rise and Fall SettingsTimes, Logic and Bus (FFT Peak has no trigger equivalent)

Panel Operation 1. Press Search from the lower bezel menu.
2. To copy the settings of the selected search type to the trigger settings, select Copy Search Settings

Search
[0n]

Copy Search Setting to Trigger to Trigger.
3. To copy over the current trigger settings to the search settings, press Copy Trigger Settings To

Copy Trigger Setting to Search Search.

If the settings cannot be copied or if there are no trigger settings configured (so that you cannot copy from the trigger settings), then those particular options will not be available.

Search Event Navigation

Background When using the search feature, each event can be

Operation 1. Turn Search on and set the Page 175 appropriate search type.
2. Search events are marked by hollow white triangles at the top of the graticule.
3. Use the search arrow keys to move between each search event.

Search events can be navigated in both stop and run mode.

When using the arrow keys to navigate to each event, the "current event" will always be centered on the display.

Save Search Marks

Background	The search events can be saved to the graticule display, allowing you to superimpose new search events. Search events are saved over the entire record length, with a maximum of 1000 marks.
Save Marks	1. Press Search from the lower bezel menu.
	2. Press the Save All Marks soft-key. $\begin{aligned} & \text { Save fll } \\ & \text { Marks }\end{aligned}$
	3. The search event markers will become solid white triangles to indicate that they have been saved.
Clear All Marks	To clear all the saved marks, press Clear All Marks from the side menu.

Each time the Save All Marks function is used, the previously saved marks will also be retained, unless cleared.

Setting/Clearing Single Search Events

Background In addition to searching for search events based on Search Type settings, custom search marks can be created with the Set/Clear key.

Set Search Event Navigate to a point of interest using 〈POSITION> the horizontal position knob or some other method.

Push to Zero

1. Press the Set/Clear key.

2. A marker will be saved at the center of the display.

This marker can be navigated to/from in the same way that a normally saved search marker can.

Clear Search To clear a set search event, use the
Event search arrows to navigate to the event of interest and press the Set/Clear key.

The marker will be deleted from the display.

FFT Peak

Background The FFT Peak search type can be used to mark all FFT peaks that are above a certain threshold.

6. Select Max Peak to search by a selected number of "max" peaks. Select Level to set the threshold level for the search events. Any peaks above the threshold level
 will be seen as a search event.

Max Peak 1~10
Level $\quad-100 \mathrm{db} \sim 100 \mathrm{~dB}$

View Number of Peak Events	To view the number of peak events, set State Info to Mark. The number of search events will be shown at the bottom of the screen.	State Info Mark Peak

Overall: 10 ∇ : (10)

View Amplitude
of Peak Search Event

To view the position and amplitude of a selected event, set State Info to Peak. This information will be shown at the bottom of the display.

(7:10) (17. पुवMHz) (-34.4dB)

Peak Event Table The Event Table function tabulates the amplitude and frequency of each peak event in real time. The event table can also be saved to a USB disk drive. File names are saved as a PeakEventTbXXXX.csv, where XXXX is a number starting from 0001 and is incremented each time the event table is saved.
7. Press Event Table from the bottom menu and turn the Event Table function on.

The event table will appear on the screen.

Save Event Table
8. To save the event table, insert a USB memory drive into the front panel USB-A port.

9. Press Save Event Table. The event table will be saved as

Save
Event Table PeakEventTbXXXX.csv.

Event Table CSV The format for the CSV file is the same as the Format event table displayed on the GDS-3000A SERIES screen; No., Frequency, and Value.

For example:

No.	Frequency	Value
1	1.0000 MHz	-29.6 dB
2	2.0000 MHz	-30.4 dB
3	3.0000 MHz	-32.0 dB

Center Peak
Results on Screen

To shift the peak events to the center of the screen, press Selected

Select Peak
to Center Peak To Center from the event table side menu.

System Settings

This section describes how to set the interface, language, time/date, probe compensation signal, erase the internal memory and access useful QR codes.

Select Menu Language

Description The GDS-3000A SERIES has a number of different languages to choose from.

Panel Operation 1. Press the Utility key.

Language
English
3. Select the language* from the side menu.

$!$ Note
Language selection may differ based on region, and as such are not listed here.

View System Information

Panel Operation 1. Press the Utility key.

3. Press System Info from the side menu. A display panel will appear showing:

- Manufacturer name
- Model name
- Serial number
- Firmware version
- Manufacturer URL

Erase Memory

Background	The Erase Memory function will erase all internal waveforms, setup files and labels from internal memory.

Erased Items Waveform 1~20, Setting memory 1~20, Reference 1~4, Labels

Panel Operation 1. Press the Utility key.

2. Press System from the lower menu.

System
3. Press Erase Memory from the side menu.

A message will prompt you to press Select key to confirm this process. Press another key to cancel this process.

Erase Disk

Background The Erase Disk function will erase all files form the internal flash driver.
Erased Items Waveform 1~20, Setting memory 1~20, Reference

Panel Operation 1. Press the Utility key.
2. Press System from the lower menu.

System
3. Press Erase Memory from the side menu.

A message will prompt you to press Select to confirm this process. Press another key to cancel this process.

Set Date and Time

Panel Operation/ 1. Press the Utility key. Parameter

2. Press Set Date \& Time on the lower menu.

Set Date
 \& Time

3. Set the Year, Month, Day, Hour and Minute from the side menu.

4. Make sure the date/time setting is correctly reflected at the top of the display.

15 Mar 2021 14:44:10

Probe Compensation Frequency

Background	The probe compensation output can be set from 1 kHz (default) to 200 kHz , in steps of
	1 kHz.

Panel Operation/ 1. Press the Utility key. Parameter
2. Press the More key.

Default Frequency 5. Press Default to set the frequency

Set to
Defaults of the probe compensation signal to 1 kHz default.

QR Code Reader Function

Background	The QR Code reader function displays a number of preset QR codes that link to useful websites.

QR Code Items

- GW Instek website
- GW Instek contact window (marketing department)

Panel Operation/ 1. Press the Utility key. Parameter

2. Press System from the lower menu.
3. Press More 1 of 3 , More 2 of 3 from
the side menu.

More
1 of 3

More
2 of 3
4. Press $Q R$ Code from the side menu. There will be two pages of QR codes to choose from.
5. Press Page 1 or Page 2 to navigate to each page.

6. Use a QR code reader app on your smart phone or tablet to read one of the QR codes.

Display

The Display menu defines how the waveforms and parameters appear on the main LCD display.

Display Waveform as Dots or Vectors

Background | When the waveform is displayed on the screen, it |
| :--- |
| can be displayed as dots or vectors. |

Panel Operation 1. Press the Utility key.
2. Press the Display key.
3. Press Dot / Vector to toggle between Dot and Vector mode.

Dot Vector

Range	Dots	Only the sampled dots are displayed.
	Vectors	Both the sampled dots and the connecting line are displayed.

Example:
Vectors
Dots

Ruler On/Off

Background The Ruler function adds a scale to the graticule.
! ${ }_{\text {Note }}$
This mode only functions in the vertical.

Panel Operation 1. Press the Utility key.

2. Press the Display menu key.

> Display
3. Press Ruler to toggle the Ruler function on/ off

Ruler
On Off

Set the Intensity Level

Background The intensity level of a signal can also be set to mimic the intensity of an analog oscilloscope by setting the digital intensity level.

Panel Operation 1. Press the Utility key.

2. Press the Display menu key.

3. Press Intensity from the bottom menu.

Waveform Intensity	4. To set the waveform intensity, press Waveform Intensity and edit the intensity.
	Range 0~100\%
Example	Waveform Intensity 50\% Waveform Intensity 100\%
Graticule Intensity	5. To set the graticule intensity, press Graticule Intensity from the side menu and edit the intensity value.
	Range 10~100\%

Example
Graticule Intensity 100\% Graticule Intensity 10\%

Backlight Intensity
6. To set the LCD backlight intensity, press

Backlight Intensity from the side menu and edit the intensity value.

Range 2~100\%

Select Display Graticule

Panel Operation	1. Press the Utility key.	Dility
\qquad2. Press the Display key. 3. Press Graticule from the bottom menu. Graticule		

4. From the side menu choose the graticule display type.

Full: Shows the full grid; X and Y axis for each division.

Grid: Show the full grid without the X and Y axis.

Cross Hair. Shows only the center X and Y frame.

Frame: Shows only the outer frame.

Transparent
Readouts

Readout background in transparent or opaque setting.

Freeze the Waveform (Run/Stop)

For more details about Run/Stop mode, see page 39.

Panel Operation		Press the Run/Stop key. The Run/Stop key turns red and waveform acquisition is paused.	$\longrightarrow \text { Runstop }$
		The waveform and the trigger freezes. The trigger indicator on the top right of the display shows Stop.	
		To unfreeze the waveform, press the Run/Stop key again. The Run/Stop key turns green again and acquisition resumes.	$\rightarrow \underbrace{\text { RunStop }}$

Turn Off Menu

1. Press the Мепи Off key below the side menu keys to reduce a menu. The menu key needs to be pressed

Menu Off
 each time to reduce one menu.

See page 30 for more information.

Arbitrary wave

GENERATOR

Arbitrary Wave Generator Operation 195
Overview 195
Rear Panel 195
AWG Display Overview 196
Generator Connection. 196
Output Setup 197
Select the Active Channel. 197
Turn the Output On for the Selected Channel. 198
Setting the Load Impedance 198
Setting the Phase 198
GEN1 and GEN2 Setup 199
Selecting a Waveform 199
Waveform Settings 200
AM Modulation 202
FM Modulation 205
FSK Modulation 207
Sweep 208
Manage Arbitrary Waveforms 210
Create New ARB Waveform 210
Edit an Existing ARB Waveform 212
Load ARB Waveform 219
Save ARB Waveform 220
Coupling and tracking waveforms settings 222

Arbitrary Wave Generator Operation

Overview

GEN1 and GEN2 Output

Outputs for the Generator 1 or Generator 2 signals.

AWG Display Overview

State Display The state display is used to visually show the major channel settings when you are in the AWG menu.

AWG Generator The AWG channel status indicators show the Status Indicators active channels, output waveforms and function.

ANG AWG status	G1 Channel status
indicator (G1, G2)	
indicator	Waveform indicator

Generator Connection

Background	This section will explain how to connect a DUT to the channel outputs.

1. Connect the BNC output (GEN1 or GEN2) to the DUT using the GTL-101 BNC-Alligator clip cables.

Output Setup

The Output Setup menu allows you to select a channel, to turn the output on or off for the selected channel, configure the load impedance and the phase of the output.

Select the Active Channel

Background \quad| Before any operations can be performed on a |
| :--- |
| channel it must first be selected. |

Panel Operation 1. Press the LA/AWG key.
LA/ AWG

2. Press $A W G$ from the bottom
menu.

AWG

Output Setup
4. Press Select from the side menu and choose GEN1 or GEN2.

Turn the Output On for the Selected Channel

Background	The output for each generator channel can be turned on or off independently.

Panel Operation

1. Press Output to toggle the selected channel on or off.

Output
On Off

Setting the Load Impedance

Background The load impedance can be independently set for each generator channel.

> Panel Operation
> 1. Press Load to toggle the impedance between 50Ω and High Z.

Setting the Phase
Background The output phase can only be set for the GEN1 output. GEN2 is always set to an output phase of 0°.

Panel Operation	1. Press Phase and use the VARIABLE knob to set the phase.
\qquadPhase $\quad-180^{\circ} \sim 180^{\circ}$ 0.0	

Reset Phase 2. The phase can be reset by pressing S_Phase.

S_Phase

GEN1 and GEN2 Setup

The GEN1 Setup and GEN2 Setup selects the output waveform, waveform settings (amplitude, frequency, offset), modulation mode or allows you to create arbitrary waveforms.

Selecting a Waveform

Background	The AWG option has 14 selectable waveforms, including a user-created arbitrary waveform. When using the modulation function, the waveform selected here is also used as the carrier wave.

1. From the AWG menu press GEN1 Setup or GEN2 Setup to select the

GEN1
Setup waveform for generator 1 or generator 2 , respectively.
2. Press Waveform from the bottom menu.
3. From the side menu press the waveform softkey and select a waveform using the VARIABLE knob.

Selectable waveforms	Arbitrary, sine, square, pulse, ramp, DC, Noise, Sinc, Gaussian, Lorentz, Exp. Rise, Exp. Fall, Haversine, Cardiac.

Waveform Settings

Background The Waveform Settings sub menu selects the Frequency, amplitude and offset settings for currently selected waveform in the GEN1 or GEN2 Setup menu.

1. From the Waveform menu, press

Waveform Settings from the side menu.

Set the Frequency 2. Press Frequency to set the frequency rate of the waveform.

When Frequency is initially pressed the VARIABLE knob can be used to quick-select the frequency stepresolution. The VARIABLE knob can then be used to set the frequency in increments of the step resolution.

Range Arbitrary, Sine: $100 \mathrm{mHz} \sim 25 \mathrm{MHz}$ Square, Pulse: $100 \mathrm{mHz} \sim 15 \mathrm{MHz}$ Others: $100 \mathrm{mHz} \sim 1 \mathrm{MHz}$

Set the Amplitude 3. Press Amplitude to set the amplitude of the waveform (use $V A R I A B L E$ knob to input value).

4. Use the Left and Right arrow keys to select a base unit and use VARIABLE knob to increase the amplitude by that base unit, as shown in the Amplitude window. Or use the numerical keypad to input value.

5. Press Go Back to leave the menu.

Go Back

Range	10 mVpp to 2.5 Vpp (Load:50』) 20 mVpp to 5 Vpp (Load: High Z)
Default	1.00 Vpp

Set the Offset
6. Press Offset to set the offset of the waveform.

Offset
0.00Vdc

7. Use the Left and Right arrow keys to select a base unit and use VARIABLE knob to increase the offset by that base unit, as shown in the Offset window. Or use the numerical keypad to input value.

```
Offset
    |
Press "Menu Off" key to exit
```

8. Default can be pressed to set the Offset to 0.00 Vdc .
9. Press Go Back to leave the menu.

Range	$-1.245 \sim+1.245$ (Load: 50Ω)
	$-2.49 \sim+2.49$ (Load: High Z)
Default	0.00 Vdc

Exit Waveform Settings
10. Press Go Back to exit the waveform settings.

AM Modulation

Background \quad| Amplitude modulation can be used for either |
| :--- |
| channel. All waveforms except Noise and DC can |
| be used as the carrier wave. Sine, square, pulse, |
| ramp and noise can be selected as the modulating |
| waveform. |

Depth	Depth 0.0\% ~ 120.0\%	
Modulation Frequency	6. Press AM Freq to set the modulation frequency.	aM Frequency 0 100. BHz
	Frequency $\quad 200 \mathrm{kHz} \sim 1 \mathrm{~Hz}$	
Shape	7. Press Shape to set the modulating wave shape.	$\begin{aligned} & \text { Shape } \\ & \text { Sine } \end{aligned}$
	Shape Sine, square, puls	ramp, noise
Phase (Sine wave only)	8. Press Phase to set the phase of the modulated wave (sine wave).	$\begin{aligned} & \text { Phase } \\ & \text { a. } 0^{\circ} \end{aligned}$
	Phase $\quad-180.0^{\circ} \sim 180.0^{\circ}$	
Duty Cycle (Pulse wave only)	9. Press Duty Cycle to set the duty cycle (pulse wave).	Dutycycle 50. 0%
	Duty Cycle $2.0 \sim 98 \%$	
Symmetry (Ramp wave only)	10. Press Symmetry to set the symmetry (pulse wave).	Symmetry 50.078
	Symmetry 0\% ~ 100\%	
Rate (Noise wave only)	11. Press Rate to set the rate (noise wave).	$\begin{aligned} & \text { Rate } \\ & \text { 1. } \mathrm{akHz} \end{aligned}$
	Noise $\quad 1 \mathrm{kHz} \sim 10 \mathrm{MHz}$	
Exit AM Settings	12. Press Go Back to exit the AM settings.	Go Back

FM Modulation

Background \quadFrequency modulation can be used for either channel. The carrier wave can only be sine, square and ramp waveforms. Sine, square, pulse, ramp and noise can be selected as the modulating waveform.	
Example	

Panel Operation 1. Select the carrier waveform from the GEN1
Setup/GEN2 Setup menu:
2. Press GEN1 Setup or GEN2 Setup for generator 1 or generator 2,

GEN1
Setup respectively.
3. Press Waveform from the bottom menu.

Waveform

Sine
4. Select the waveform from the side menu. This will be the carrier wave.

Carrier Waves Sine, square, ramp
5. Press the Modulation from the bottom menu.
6. From the side menu, turn Modulation on.

Modulation
On 0ff

	7. Press $F M$ to select $F M$ modulation and to enter the FM modulation setup menu.	FM
Set the Frequency Deviation	8. Press Freq Dev to set the frequency deviation.	Frequency Dev 100.0 Hz
	Deviation $12.5 \mathrm{MHz} \sim 0.1 \mathrm{~Hz}$	
Modulation Frequency	9. Press FM Freq to set the modulation frequency.	FM Frequency D 100. 0Hz
	Frequency $\quad 200 \mathrm{kHz} \sim 1 \mathrm{~Hz}$	
Shape	10. Press Shape to set the modulating wave shape.	$\begin{aligned} & \text { Shape } \\ & \text { Sine } \end{aligned}$
	Shape Sine, square, pulse,	ramp, noise
Phase (Sine wave only)	11. Press Phase to set the phase of the modulated wave (sine wave).	$\begin{aligned} & \text { Phase } \\ & 0.0^{\circ} \end{aligned}$
	Phase $\quad-180.0^{\circ} \sim 180.0^{\circ}$	
Duty Cycle (Pulse wave only)	12. Press Duty Cycle to set the duty cycle (pulse wave).	Dutycycle 50. 0\%
	Dutycycle 1\% ~ 99\%	
Symmetry (Ramp wave only)	13. Press Symmetry to set the symmetry (ramp wave).	Symmetry 50.0\%
	Symmetry 0\% ~ 100\%	
Rate (Noise wave only)	14. Press Rate to set the rate (noise wave).	$\begin{array}{r} \text { Rate } \\ \frac{\text { 1.0kHz }}{} \end{array}$
	Rate $\quad 1 \mathrm{kHz} \sim 10 \mathrm{MHz}$	

Exit FM Settings 15. Press Go Back to exit the FM settings.

FSK Modulation

Background	Frequency Shift Keying Modulation is used to shift the frequency output of the function generator between two preset frequencies (carrier frequency, hop frequency).
Example	

Panel Operation

1. Select the carrier waveform from the GEN1 Setup/GEN2 Setup menu:

Press GEN1 Setup or GEN2 Setup for generator 1 or generator 2 , GEN1 Setup respectively.

Press Waveform from the bottom menu.

Waveform
Sine,

Select the waveform from the side menu. This will be the carrier wave.

Carrier Waves Sine, square, ramp
2. Press the Modulation from the bottom menu.
3. From the side menu, turn Modulation on.

Modulation On Off
4. Press FSK to select FSK modulation and to enter the FSK modulation setup menu.

Set the Hop Freq	5. Press Hop Freq to set the hop frequency.	
	Hop Freq $25 \mathrm{MHz} \sim 0.1 \mathrm{~Hz}$	
FSK Rate	6. Press FSK Rate to set the rate at which the waveform switches from the carrier and hop frequency.	FSK Rate 100. 日HZ
	FSK Rate $1 \mathrm{~Hz} \sim 200 \mathrm{kHz}$	

Exit FSK Settings 7. Press Go Back to exit the FSK settings.

Sweep

Background The Sweep function can be used with sine, square and ramp waveforms for either channel. The function supports linear or logarithmic sweeping as well as up or down sweeping.
Example

Panel Operation	1. Select the waveform from the GEN1 Setup/GEN2 Setup menu: Press GEN1 Setup or GEN2 Setup for generator 1 or generator 2 , respectively.	
		GEN1 Setup
	Press Waveform from the bottom menu.	Waveform Sine
	Select the waveform from the side menu.	
	Sweep Waves Sine, square, ramp.	
	2. Press the Sweep from the bottom menu.	Sueep
	3. From the side menu, turn Sweep on.	$\begin{gathered} \text { Sweep } \\ \text { On Off } \end{gathered}$
Type of Sweep	4. Press Type to set the sweep to linear or logarithmic.	$\begin{aligned} & \text { Type } \\ & \text { Linear } \end{aligned}$
	Type Linear, Log	
Start and Stop Frequency	5. Press the Start or Stop soft-keys to set the start and stop frequency, respectively.	Start 100.0 Hz
		$\begin{gathered} \text { Stop } \\ \text { () } 500.0 \mathrm{kHz} \end{gathered}$
	Start/Stop $\quad 25 \mathrm{MHz} \sim 0.1 \mathrm{~Hz}$	

$!$ Note
To configure a up sweeping, set the start frequency at a lower value than the stop frequency. To configure a down sweeping, set the start frequency at a higher value than the stop frequency.

Center Frequency Alternatively the center frequency and span can \& Span be set instead of the start and stop frequencies.
6. Press More 1 of 2 .
7. Press SWP Time to set how long the sweep takes to go from the start to the stop frequency.
Sweep time $\quad 5.0$ us ~ 10 s
8. Press Span to set the frequency span of the sweep.
9. Press Center to set the center frequency for the configured span.

Center
250. 0 kHz

Span	$25 \mathrm{Mhz} \sim-25 \mathrm{MHz}$
Center	$25 \mathrm{MHz} \sim 0.1 \mathrm{~Hz}$

To configure a up sweeping, set the span with a positive frequency. To configure a down sweeping, set the span with a negative frequency.

Manage Arbitrary Waveforms

The Arbitrary Waveform menus allow you to create, edit, recall and save arbitrary waveforms. The menus are accessible via the Waveform Edit button on the bottom menu once GEN1 or GEN2 has been setup with an arbitrary waveform.

Create New ARB Waveform

Background The Create New menu is used to load an inbuilt waveform with a defined length in order to build the shape of the arbitrary waveform. Supported waveforms include: Sine, Square, Pulse, Ramp and Noise.

Panel Operation 1. Select an arbitrary waveform from the GEN1 Setup/GEN2 Setup menu:

Press GEN1 Setup or GEN2 Setup
for generator 1 or generator 2 , Setup respectively.

Press Waveform from the bottom menu.

Select Arbitrary from the side menu.
2. Press the Waveform Edit from the bottom menu.

Waveform Edit
3. From the bottom menu select Create New.
4. Press Initial Points to set the number of points for the waveform length.
Initial Points $\quad 2 \sim 16384$
5. Press Function to choose an inbuilt waveform:

Sine	Function Square Sulse Ramp Noise
OK	
	Create

Function: Sine, Square, Pulse, Ramp, Noise
6. Press OK Create to create the arbitrary waveform shape.

Create

Edit an Existing ARB Waveform

Background	Use the Edit Existing menu to edit a newly created waveform and further shape it according to your requirements. You can also use the Edit Existing menu for arbitrary waveforms that have been recalled (see Load Waveform page 219). There are two main options that can be used to edit waveforms: Normal Edit and Function Edit.

Editing Methods Normal Edit:
The Normal Edit function allows you to insert or delete points at any position on a waveform.

Function Edit:
The Function Edit function allows you to edit the waveforms in a number of different ways:

- Point/Line: Insert a point or horizontal line into the ARB waveform.
- Diagonal: Insert a diagonal line
- Scale: Scales the ARB waveform vertically.
- Copy/Paste: Copy or paste a section of the ARB waveform.
- Clear: Clears a section of the ARB waveform and replaces it with a 0 V DC waveform.

Insert Point:

To insert a point, you must first set the position of the point to be inserted.
a. Press Point to set the x -axis position of the point.

Point
(c) 131

Point $\quad 1 \sim$ user-defined point position
b. Press Level to set the amplitude of the point. The max/min

Level
135m V amplitude depends on the waveform amplitude settings, see page 200.

$$
\begin{array}{ll}
\text { Level } & \pm 1.25 \mathrm{Vdc}(\text { Load: } 50 \Omega) \\
& \pm 2.5 \mathrm{Vdc}(\text { Load: High Z) }
\end{array}
$$

c. Press Insert Point. The inserted
point will increase the length of the waveform by one point.

Insert
Point

Delete Point:
d. Press Delete Point to delete the point set with the "Point" softkey.

The overall length of the waveform will be shortened by one point.

7. Press Edit Method to	Point/Line	Edit Method
choose the editing	Diagonal	Point/Line
	Scale	
method:	Copy/Paste	Action
	Clear	

Edit Method: Point/Line
Diagonal
Scale
Copy/Paste Clear
8. Press Action to begin using the selected editing method:

Point/Line:
a. Press Point/Level once to select the point's X -axis start point.

```
                                    Point/Level

Press Point/Level again to select the amplitude (Level)
\begin{tabular}{ll}
\hline Point & \(1 \sim\) user-defined point position \\
\hline Level & \(\pm 1.25 \mathrm{Vdc}\) (Load: \(50 \Omega\) ) \\
& \pm 2.5 Vdc (Load: High Z\()\) \\
\hline
\end{tabular}
b. Press Length to set the length of the line.

Length
■
\begin{tabular}{ll}
\hline & Length \(\quad 0 \sim\) user-defined point length \\
\hline c. \begin{tabular}{l} 
The Adjustment soft-key can be \\
used to toggle the step
\end{tabular} \\
\begin{tabular}{l} 
Adjustment \\
resolution of the VARIABLE \\
knob when editing values in \\
this menu.
\end{tabular} \\
\hline Adjustment & Fine, Coarse \\
\hline
\end{tabular}
d. Press Preview. The desired edit
will then be previewed on the screen.
e. Press Done to confirm the edit, or press Undo to cancel.

Preview

Done

Undo
f. Press Go Back to go back to the previous menu.

Diagonal:
a. Press Point1/Level1 once to select the point's X axis start point.


Press Point1/Level1 again to select the amplitude (Level) of the start point.
Point1 1~user-defined point position
Level1 \(\pm 1.25 \mathrm{Vdc}\) (Load: 50 \()\)
\(\pm 2.5 \mathrm{Vdc}\) (Load: High Z)
b. Press Point2/Level2 once to select the point's \(X\) axis end point.

Point2/Level2
419
136 mV

Press Point2/Level2 again to select the amplitude (Level) of the end point.

Point2 1~user-defined point position
Level2 \(\pm 1.25 \mathrm{Vdc}\) (Load: 50 \()\)
\(\pm 2.5 \mathrm{Vdc}\) (Load: High Z)
c. The Adjustment soft-key can be used to toggle the step
when editing values in this menu.
Adjustment Fine, Coarse
d. Press Preview. The desired edit
will then be previewed on the screen.

Preview

Done or press Undo to cancel.
f. Press Go Back to go back to the previous menu.

Go Back

Scale:
a. Press Scale and use VARIABLE knob to set the scale of the

Scale
\(1.0 \times\) waveform vertically.

If the waveform exceeds the maximum amplitude it will be clipped.

Scale \(\quad 0.1 \mathrm{x} \sim 10 \mathrm{X}\)
b. Press Go Back to go back to the previous menu.

Go Back

Copy/Paste:
a. Press Start to set the start point of the section you want to copy.
b. Press Length to set the size of the section you want to copy

Length
1 from the start point.

The copied section will be shown as a grey box on the display
Start \(\quad 1 \sim\) user-defined point position
\begin{tabular}{|c|c|c|}
\hline Length & \(1 \sim\) user defined p & int length \\
\hline \multicolumn{2}{|l|}{c. Press Paste To to choose where the selected section is copied to.} & Paste to 1 \\
\hline Paste To & \multicolumn{2}{|l|}{\(1 \sim\) user defined point position} \\
\hline \multicolumn{3}{|l|}{d. Press Preview. The desired edit will then be previewed on the screen. The pasted section will be shown as a yellow box on the screen.} \\
\hline \multicolumn{2}{|l|}{e. Press Done to confirm the edit, or press Undo to cancel.} & Done \\
\hline \multicolumn{2}{|l|}{f. Press Go Back to go back to the previous menu.} & Go Back \\
\hline \multicolumn{3}{|l|}{Clear Section:} \\
\hline \multicolumn{2}{|l|}{a. Press Start to set the start point of the section you want to clear.} & Start \\
\hline \multicolumn{2}{|l|}{Press Length to set the size of the section you want to clear.} & Length 228 \\
\hline \multicolumn{3}{|l|}{Start \(\quad 1 \sim\) user-defined point position} \\
\hline \multicolumn{3}{|l|}{Length \(1 \sim\) user-defined point length} \\
\hline
\end{tabular}
b. Press Undo to clear the selected section.

Undo
c. Alternatively, press All to clear the entire waveform from the screen.
d. Press Go Back to go back to the previous menu.

Load ARB Waveform

Background ARB waveforms can be loaded from internal memory or from an external USB storage. It can also be loaded directly from the input channels

Panel Operation 1. Select a waveform from the GEN1 Setup/GEN2 Setup menu:

Press GEN1 Setup or GEN2 Setup for generator 1 or generator 2 , GEN1 Setup respectively.

Press Waveform from the bottom menu.

Select Arbitrary from the side menu.
2. Press Waveform Edit from the bottom menu.

Waveform Edit
3. From the bottom menu select Load Waveform.

Load
Waveform
4. To load a file from one of the internal memory slots, press From to choose the ARB waveform to load the current waveform in channel or Ref \(\sim\) Ref4.
\begin{tabular}{|l|l|l|}
\hline Arb1 & From \\
\hline Arb2 & Arb1 \\
\hline Arb3 & \\
\hline Arb4 & \\
\hline CH1 & \\
\hline CH2 & \\
\hline CH3 & \\
\hline CH4 & \\
\hline Ref1 & \\
\hline Ref2 & \\
\hline Ref3 & \\
\hline Ref4 & \\
\hline
\end{tabular}

ARB: Arb1, Arb2, Arb3, Arb4, CH1~CH4, Ref1~Ref4
5. To load a file from an external USB or from the internal flash memory, press From File.

DS8801.UFW

The last file that was saved to USB or the internal flash memory will be displayed in the icon.
6. To recall the displayed file, press Recall Now.
7. Alternatively, press File Utilities.

Use the VARIABLE knob to select the desired ARB waveform.

Press the Select key to load the selected ARB waveform in the file Select utilities screen.

Press File Utilities to manage the files on the internal disk or an inserted USB disk. See page 364 for details.

Save ARB Waveform
Background ARB waveforms can be saved to internal memory or to an external USB storage.
1. Select a waveform from the GEN1 Setup/GEN2 Setup menu:

Press GEN1 Setup or GEN2 Setup for generator 1 or generator 2, respectively.

Press Waveform from the bottom menu.

Waveform
Arbitrary

Select Arbitrary from the side menu.
2. Press Waveform Edit from the bottom menu.
```

Waveform
Edit

Save Waveform
4. To save to one of the internal memory slots, press To to choose the ARB waveform to save:

ARB:
Arb1, Arb2, Arb3, Arb4
Press Save to save the waveform to the selected memory slot, Arb1, Abr2, Arb3 or Arb4.
5. Alternatively, to save to a USB drive or to the internal flash memory, press To File.
6. To save the selected file, press Save waveform.

To File DS8Bar. UPW
3. From the bottom menu select Save Waveform.

Press Enter Character or the Select key to select a number or letter.

Enter
Character
Press Back Space to delete a character.
9. Press Save Now to save the file.

Save Now

Pressing Cancel will cancel the save operation and return you to the Save Waveform menu.

After Save Now has been pressed the file will be saved.

Waveform saved to Disk:/DS0003. UAW.

$!$ Note

Alternatively, to edit the internal memory or the USB flash drive
contents (create/ delete/rename files and folders) or to edit the default file path, press File Utilities from the side
menu. See the user manual for details menu. See the user manual for details

Coupling and tracking waveforms settings

Background GEN1 and GEN2 waveforms can be coupled in terms of frequency and/or amplitude. Similarly, waveform settings can also be tracked and be duplicated from one waveform to the other.

Panel Operation 1. From the bottom menu of the AWG menu:
Press UTIL to enter the Utility menu.
The file will not be saved if the power is turned off or the USB drive is taken out before the message ends.

You can press on the Preset button from the side menu to reset both wave generators to a 0 V DC

Preset waveform.
2. Press Dual Chan from the side menu to enter the coupling and tracking menus.

Tracking settings
3. From the side menu press Tracking to set
 the tracking mode to ON or OFF.
Tracking ON, OFF

When Tracking is ON, all parameters set to one waveform will be copied to the other one and vice-versa.

Note
Tracking mode cannot be used together with the Frequency or Amplitude Coupling. Setting the Tracking mode to ON will disable any Coupling settings.

Frequency coupling
4. From the side menu press Freq Couple
5. Press Freq Couple Type to set the type of frequency coupling.

Freq Cpl Type OFF, Offset, Ratio
Frequency from both generated waveforms can be coupled with a fixed offset or with a constant ratio.
6. Select Offset from the Freq Couple Type menu and press Offset on the side menu to configure the offset of the frequency coupling.
7. Use the Left and Right arrow keys to select a base unit and use the VARIABLE knob to increase or decrease the offset by that base unit, as shown in the Offset window. User the VARIABLE knob or numerical keypad to input value.

```
Offset
    1
    Press "Menu Off" key to exit.
```

8. Default can be pressed to set the Offset to 0.0 Hz .
9. Press Go Back to leave the menu.
10. Select Ratio from the Freq Couple Type menu and press Ratio on the side menu to configure the ratio of 1.006 the frequency coupling.
11. User the VARIABLE knob or numerical keypad to input value.

12. Default can be pressed to set the Ratio to 1.000 .
13. Press Go Back to leave the menu.

Go Back
14. Press again Go Back to leave the menu Frequency Coupling menu.

A! Note	Frequency Coupling cannot be set if Tracking is ON. Configuring Frequency Coupling parameters will disable the Tracking mode.
Amplitude coupling	15. Press Amplitude Couple to set the amplitude coupling to ON or OFF.
	An
Amplitude Couple OFF, ON	

Power analysis
 (OPTIONAL)

Power Analysis Overview 228
Set the Deskew. 228
Power Quality 230
Power Quality parameter overview 230
Using Power Quality Measurements 231
Switching Loss 234
Using Switching loss Measurements 234
Harmonics 239
Harmonics parameter overview 239
Define Harmonic Inputs 240
Choosing a Harmonic Standard Test 241
Harmonics Setup - Default (None) 242
Harmonics Setup - IEC 243
Harmonics Display options 245
Save Harmonic Measurements 247
Ripple 249
Using Ripple Measurements 249
Inrush 251
Using Inrush Current Measurements 251
Modulation 253
Using Modulation Measurements 253
Safe Operation Area 257
Using Safe Operation Area Measurements 257
Transient 261
Using Transient Measurements. 261
Efficiency 264
Using Efficiency Measurements 264
B-H curve 267
Using B-H curve Measurements 267
Control Loop Response 271
Using Control Loop Response Measurements 271
Source 273
Setup amplitude profile 273
Setup AWG 275
Quit 277
Analysis mode 277
Measure. 277
Bode Plot 278
Overlay 280
File Utilities 281
Power Supply Rejection Ratio (PSRR) 283
Using PSRR Measurements 283
Source 286
Setup amplitude profile 286
Setup AWG 286
Quit 286
Analysis mode 286
Measure 286
Bode Plot 286
Overlay 286
File Utilities 286
Turn On/Off 287
Using Turn On/Off Measurements 287

Power Analysis Overview

Power analysis provides automatic measurement for a number of advanced measurement types which allows user to acquire, measure, and analyze various switching power supply signals at multiple test points. This optional power analysis tool provides simple and direct way to obtain results about switching devices, magnetic components, and compliance tests to EN 61000-3-2 standard for Switch mode Power supply.

Set the Deskew

The deskew function is used to compensate for the propagation delay between the oscilloscope and the probe. For power measurements this is especially important as voltage and current probes are often used in measurements and have differing propagation delays.

Background The deskew function allows the time delay between voltage and current probes to be equalized.

Panel operation 1. If there is necessary, configure a channel as a voltage probe and another channel as a current probe.
2. Press one of the Channel keys that was set as the voltage or current probe.

3. Press the More key from the bottom menu.

More
4. Press the Probe key from the right menu.

Probe
Voltage
$1 \times$
5. Press Deskew on the side menu and use the VARIABLE knob to set the deskew time.

Alternatively, press Set to 0s to

Deskew 0 5

Set to Os reset the deskew time. Typically, both channels should line up with a common edge.

Range $\quad-50 \mathrm{~ns} \sim 50 \mathrm{~ns}, 10 \mathrm{ps}$ increments
6. If necessary, repeat the procedure for the other channel.

Power Quality

Power Quality parameter overview

All the following parameters are used for power quality measurements.

Measurement Measurement Group
Normal Inrush Ballast Turn On

V RMS	\checkmark	\checkmark	\checkmark	\checkmark
I RMS	\checkmark		\checkmark	\checkmark
True Power	\checkmark		\checkmark	\checkmark
Apparent Power	\checkmark		\checkmark	\checkmark
Reactive Power	\checkmark		\checkmark	\checkmark
Frequency	\checkmark	\checkmark	\checkmark	\checkmark
Power Factor	\checkmark		\checkmark	\checkmark
Phase Angle	\checkmark			\checkmark
V Crest Factor	\checkmark		\checkmark	\checkmark
I Crest Factor	\checkmark		\checkmark	\checkmark
(+)V Peak		\checkmark	\checkmark	\checkmark
(-)V Peak		\checkmark	\checkmark	\checkmark
(+)I Peak		\checkmark	\checkmark	\checkmark
(-)I Peak		\checkmark	\checkmark	\checkmark
DC Voltage			\checkmark	\checkmark
DC Current			\checkmark	\checkmark
Impedance				\checkmark
Resistance				\checkmark
Reactance				\checkmark

Using Power Quality Measurements

Background For typical power measurements, one channel is used to measure voltage using a differential probe and the other channel is used to measure current using a current probe.

In the example below, the power quality of an AC power source is tested.

! WARNING
Ensure safe working practices are adhered to when working with live voltages. Failure to do so could lead to electric shock or loss of life.

Setup 1. Deskew the current and voltage probes.
2. Connect the differential probe and current probe to an input channel.
3. Connect to the power cord and turn on the power switch when all the connections have been made and configured.

Panel operation 1. Press the Power analysis key on the front panel.

Power Analysis

VARIABLE

Power
Quality
3. The measurements for power quality appear.

Define Inputs

1. Press Define Inputs from the lower

Define Inputs
2. Choose the Voltage input (differential voltage source) from CH1 the side menu.
3. Choose the Current input (current probe source) from the side menu.
4. Press Meas. Display.
5. Choose what type of automatic measurements should be displayed from the side menu.

Range Turn Off All Meas.
Normal
Inrush
Ballast
Turn On
6. Press Frequency Reference from the

Frequency bottom menu.
7. Choose Voltage or Current as the frequency reference.

Range Voltage, Current		
Gating	To set the measurement area press Gating from the bottom menu and select the Gating mode from the side menu. See the user manual for more details.	
Gating \quadGating Screen		

Switching Loss

Using Switching loss Measurements

Background As the need to improve power efficiency and extend the operating time of battery powered devices increases, the ability to analyze power loss and optimize the efficiency of power supplies will become even more important. The switching loss analysis calculates the power dissipation arising in a switching device.

Ensure safe working practices are adhered to when working with live voltages. Failure to do so could lead to electric shock or loss of life.

Setup

1. Connect the positive terminal of the differential probe to the Drain(D) of the FET circuit, the negative terminal to the Source (S), and the current probe is connecting to the Source (S).
2. Connect to the power cord and turn on the power switch when all the connections have been made and configured.

Panel operation 1. Press the Power analysis key on the front panel.

Power

2. Use the VARIABLE knob to select Switching Loss function on the screen

3. The switching loss measurement is shown on the screen.

Define Inputs

1. Press Define Inputs key from the lower menu.

Define
Inputs
2. Choose the Voltage input (source) from the side menu.
3. Choose the Current input (source) from the side menu.
4. When a so-called "Enhance mode" is enabled, it is possible to
define another voltage input source with an enhanced vertical resolution as compared to the original voltage input. Usually, the enhanced channel is also differentially probing on the same test point as is the original voltage channel pointing to but with a smaller scale.

For instance, while the original voltage input CH1 uses a scale of 100 V , an enhanced channel, say CH 3 , may adopt a finer scale such
as 50 V or 20 V . In that way, the socalled enhanced channel can improve the digital representation of a near-zero volt state during the conduction period, which in turn will result in a more accurate conduction loss measurement.
Range CH1~4 (valid options are those other than the voltage and current inputs)

Reference Levels
 1. Press Reference Levels key from the lower menu for the High/
 Reference Levels Middle/ Low of switching edges.
 The value is in percentage of the maximum switch voltage/current. User can adjust this value to ignore noise floors or null offset that is difficult to eliminate in current probes. The reference level specifies the threshold that is used to determine the switching edges.
 Range $0 \sim 100 \%$

2. User the VARIABLE knob or VARIABLE numerical keypad to input value.

Conduction
Calculation

1. Press the Conduction Calculation key from the lower menu to choose the algorithm of conduction calculation. It can be voltage waveform(V Wfm), RDS(on), or VCE(sat).
2. When voltage waveform is selected, the conduction simply uses Power $=\mathrm{V} \times \mathrm{I}$ formula.

Conduction Calculation V Wfm

Voltage

Waveform
3. Press the Enhance Mode key to toggle the state of the Enhance Mode.
4. For RDS(on), Power $=I^{2} x$ RDS(on).

RDS(on)
(best for MOSFET
5. Press the $R D S$ (on) key and the additional softkey to specify Rds(on).
Range $\quad 0 \sim 100 \Omega$
6. Power $=\operatorname{VCE}($ sat $) \times I$ when $\operatorname{VCE}(\mathrm{sat})$ is set.

VCE (sat)
(best for
BJT/IGBT)
7. Press the $V C E($ sat) key and the additional softkey to specify VCE(sat).

Range $0 \sim 100 \mathrm{~V}$
Meas. Display
The voltage and current waveforms are displayed, as well as the power

Meas.
Display waveform (waveform MATH multiply of the voltage and current).
Also displayed are these automatic power measurements and statistics

1. Press the All key to display all measurement items including Power Loss, Energy Loss, RDS(on) and VCE(sat).
2. Press the Power loss key to display only Power Loss.

Power
Loss
3. Press the Energy loss key to display only Energy Loss.
4. Press the Position key and then use the VARIABLE knob to adjust MATH waveform trace position.

VARIABLE

5. Press the Unit/div Key and then use the VARIABLE knob to adjust vertical scale of MATH waveform trace.

VARIABLE

Unit/div
500mVV

Gating
To set the measurement area, press Gating key from the bottom menu and select the gating mode from the Gating side menu.

Gating Off (Full Record), Screen, Between Cursors

Harmonics

Harmonics parameter overview

All the following parameters are used for harmonic measurements.

Measurement	None IEC 61000-3-2 ${ }^{*}$		
Frequency (Hz)	\checkmark	\checkmark All classes	
Magnitude (\%)	\checkmark	\checkmark All classes	
Mag. RMS (A)	\checkmark	\checkmark All classes	
Phase (${ }^{\circ}$)	\checkmark		
Limit (A)		\checkmark A, B C.1, C.3,D	
Limit (\%)		\checkmark C.2	
Pass \| Fail		\checkmark All classes	
Max all Windows		\checkmark All classes	
(A)			
200\% Limit		\checkmark All classes	
POHC Limit		\checkmark All classes	
THD-F	\checkmark	\checkmark All classes	
THD-R	\checkmark		
RMS	\checkmark	\checkmark All classes	
Overall		\checkmark All classes	
POHC		\checkmark All classes	
POHL		\checkmark All classes	
Input Power		\checkmark C.3, D	
Power Factor		\checkmark C.1, C.2, C.3	
Fundamental		\checkmark C.1, C.2, C.3	
Current			
DF**		\checkmark C.3	

*A, B, C.1, C.2, C.3, D are Class A, Class B, Class C (Table 1), Class C (Table2), Class C (Table 3), Class D
**DF (displacement factor) is one of the important factor for LED lights measurement.

Define Harmonic Inputs

Background \quad| Current and voltage inputs must be defined for |
| :--- |
| harmonic measurements. |

Background For harmonic measurements, one channel is used to measure voltage using a differential probe and the other channel is used to measure current using a current probe.

In the example below, the harmonic content of an AC power source is tested.

Ensure safe working practices are adhered to when working with live voltages. Failure to do so could lead to electric shock or loss of life.

Setup 1. Deskew the current and voltage probes.
2. Connect the differential probe and current probe to an input.
3. Connect to the power cord and turn on the power switch when all the connections have been made and configured.

Panel operation 1. Press the Power analysis key on the front panel.

Power Analysis
2. Use the VARIABLE knob to select

VARIABLE Harmonics function from the screen.

3. The measurements for harmonics appear

IEC 61000-3-2

Define Inputs

1. Press Define Inputs from the lower menu.

Define Inputs
2. Choose the Voltage input (source) from the side menu.
3. Choose the Current input (source) from the side menu.

Choosing a Harmonic Standard Test

Panel operation

1. Press the Power analysis key on the front panel.

Power Analysis
2. Use the VARIABLE knob to select VARIAbLE Harmonics function from the screen.

3. Press Test to Standard key from the lower menu.

Test to Standard None
4. Choose a desired Test Standard from the side menu.
Standard None, IEC 61000-3-2
Harmonics Setup - Default (None)

Background It provides self-defined parameters for use in the frequency range of 10 Hz to 400 Hz and $20 \sim 400$ number of harmonics.

Panel operation 1. Press the Power analysis key on the front panel.

Power

2. Use the VARIABLE knob to select

VARIABLE Harmonics function from the screen.

3. Press Setup key from the lower menu.

Setup

Number of Harmonics (c) 48

Range 20-~400
5. Choose the Harmonics Source.

> Harmonics
> Source v I

Source V, I
6. Set the Frequency Reference.

> | Frequency |
| :---: |
| Reference |
| Harm. Source |

Reference V, I, Harmonics source, Fixed
7. If Fixed is set as the frequency reference, set the Fixed Reference frequency.

Reference $10 \mathrm{~Hz} \sim 400 \mathrm{~Hz}$
Harmonics Setup - IEC

Background	The following Setup menu is only applicable when IEC is chosen as the testing standard. See page 241 for details.

Panel operation 1. Press the Power analysis key on the front panel.

Power Analysis Analysis
2. Use the VARIABLE knob to select

VARIABLE Harmonics function from the screen.

3. Press Test to Standard key from the lower menu. Select IEC 61000-3-2 from side menu.
4. Press Setup from the lower menu.
5. Press the Line Frequency key from the side menu.

Line
Frequency
5060
Range $50,60 \mathrm{~Hz}$
6. Choose the Observation Period.

Observation
Period
10.05

Time $\quad 200 \mathrm{~ms} \sim 150$ seconds
Default Settings Press Set to IEC Defaults key to set to IEC default settings.

Device Class Four device classes can be chosen for the IEC standard.

1. Press More from the Setup side menu.

More ,

Device
Class
A
Class A, B, C(Table 1), C(Table 2), C(Table3), D
3. For class C devices, choose the Power Factor and Current.

Class C ower Factor
(0) 0.98
Class C Current 16. 日月

Pow. Fact. $\quad 0.00 \sim 1.00$
Current $100 \mathrm{~mA} \sim 16.0 \mathrm{~A}$
4. For class C(Table 3) and Class D devices, choose the Input Power.
$C(3) \& D$
Input Power
100W
Power $\quad 0 \sim 600 \mathrm{~W}, 10 \mathrm{Watt}$ increments

Filter, Grouping The filter function applies a 1.5 second smoothing and Hysteresis filter function. The Grouping function groups inter-harmonic measurements.

1. Press more twice from the side menu.
2. Press Filter to toggle the filter time on or off for 1.5 seconds.

Filter(1.5s)

On Off

| | Filter \quad On, Off | |
| :--- | :--- | :--- | :--- |
| Grouping | 3.Press Grouping to toggle grouping
 on or off. | Grouping
 On off |
| | Grouping \quad On, Off | |

Harmonics Display options

Background Harmonic measurements can be displayed onscreen in graph or table format. When in graph format, a harmonic must be chosen for individual measurements.

Panel operation 1. Press the Power analysis key on the front panel.

Power Analysis
2. Use the VARIABLE knob to select

VARIABLE Harmonics function from the screen.
Harmonic
3. Press Display from the lower menu

> Display
4. Choose to display harmonic measurements as a graph or as a table.

```
All
                                    Odd
                                    Even
5. Toggle between viewing All, Odd or Even harmonics.

Harmonic All, Odd, Even
6. Press Select and use the VARIABLE knob to choose a harmonic measurement to view or
 to navigate the harmonic list.
Select \(\quad 1 \sim\) number of measurement results

\section*{Save Harmonic Measurements}
\begin{tabular}{ll} 
Background & \begin{tabular}{l} 
All harmonic measurements can be saved \\
internally or to USB. The files are stored as .CSV.
\end{tabular} \\
\hline
\end{tabular}

Panel operation 1. Press the Power analysis key on the front panel.

Power Analysis Analysis
2. Use the VARIABLE knob to select

VARIABLE Harmonics function from the screen.

3. Press Save Meas. To File from the lower menu.

Save Meas. to File

Each measurement that is saved is saved as HarmXXXX.CSV into the designated USB file path. Each file is numbered sequentially from 0000 to 9999 . For example the first file will be saved as Harm0000.CSV, the second as Harm0001.CSV, and so on.

Data The data that is saved depends on whether Test to Standard is set to None or to IEC 61000-2-3. Please page 239 for details.

Example Below shows an exa mple of the harmonic data that is saved.
\begin{tabular}{|r|r|r|r|r|}
\hline \multicolumn{3}{|l|}{ GW GDS-3354A, serial number P930116, version V1.05 } \\
\hline Harmonics & & & & \\
\hline & & & & \\
\hline THD-F & \(113 \%\) & & & \\
\hline THD-R & \(75.10 \%\) & & & \\
\hline RMS & 353 mA & & & \\
\hline & & & & \\
\hline & & Freq & Mag & Mag RMS \\
\hline & \(H z\) & \(\%\) & Phase \\
\hline 1 & 60.07 & 100 & \(217 m\) & Degrees \\
\hline 2 & 120.1 & 29.4 & \(640 \mu\) & -135 \\
\hline 3 & 180.2 & 62.1 & \(135 m\) & 31.4 \\
\hline 4 & 240.2 & 24.1 & \(524 \mu\) & -135 \\
\hline 5 & 300.3 & 47.2 & 102 m & 29 \\
\hline 6 & 360.4 & 53.4 & \(1.16 m\) & 79.1 \\
\hline 7 & 420.5 & 44.8 & 97.5 m & 10.3 \\
\hline 8 & 480.5 & 1.27 & \(2.77 m\) & 2.35 \\
\hline
\end{tabular}

\section*{Ripple}

\section*{Using Ripple Measurements}

Background The ripple function allows power supply ripple to be measured with ease. The function allows automatic vertical scaling to maximize the vertical resolution of the measurement by isolating the AC component from the DC waveform.

Ensure safe working practices are adhered to when working with live voltages. Failure to do so could lead to electric shock or loss of life.

Setup 1. With the power disconnected from the power source, connect the differential voltage or current probe to the positive and negative output terminals.
2. Connect the differential or current probe to an output.
3. Connect to the power cord and turn on the power switch when all the connections have been made and configured.

Panel operation 1. Press the Power analysis key on the front panel.

2. Use the VARIABLE knob to select

VARIABLE Ripple function from the screen.

3. The measurements for ripple appear.


Define Inputs
1. Press Define Inputs from the lower menu.

Define
Inputs
2. Choose the Voltage input (source) from the side menu.
3. Choose the Current input (source) from the side menu.
4. Press Source from the bottom menu to toggle the ripple source
    Source V, I
5. To automatically set the vertical scale, press Do Vertical Autoset. This will offset the DC component to maximize the accuracy of the ripple measurement.

Gating
To set the measurement area, press Gating key from the bottom menu

Gating Screen and select the gating mode from the side menu.

Gating Off (Full Record), Screen, Between Cursors

\section*{Inrush}

\section*{Using Inrush Current Measurements}

Background The GDS-3000A is able to quickly measure the inrush current generated when a power supply is first turned on. The Inrush function can measure the first and second peak.

Ensure safe working practices are adhered to when working with live voltages. Failure to do so could lead to electric shock or loss of life.
1. With the power disconnected from the power source, connect the current probe to Line wire.
2. Connect the current probe to an input.
3. Connect to the power cord and turn on the power switch when all the connections have been made and configured.

Panel operation 1. Press the Power analysis key on the front panel.

2. Use the VARIABLE knob to select

VARIABLE Inrush Current function from the screen.

3. The measurements for inrush current appear measuring the first and second inrush current peaks.

\section*{Example}

4. Press Define Inputs from the lower menu.

Define
Inputs
5. Choose the Current input (source) from the side menu.

To effectively measure inrush current, use the oscilloscope in Single mode to capture the inrush
Note current when it occurs.

A voltage source cannot be selected for inrush current.

\section*{Modulation}

\section*{Using Modulation Measurements}
\begin{tabular}{|c|c|}
\hline Background & The Modulation analysis measures the control pulse signal to a switching device (MOSFET) and observes the trending of the pulse width, duty cycle, period, frequency, etc. of the control pulse signal in response to different events. \\
\hline \(\qquad\) WARNING & Ensure safe working practices are adhered to when working with live voltages. Failure to do so could lead to electric shock or loss of life. \\
\hline Setup & 1. Connect the differential probe the Source (S) and Gate (G) of the FET circuit, and the current probe is connecting to the Drain (D). \\
\hline & 2. Connect to the power cord and turn on the power switch when all the connections have been made and configured. \\
\hline \multirow[t]{3}{*}{Panel operation} & 1. Press the Power analysis key on the front panel. \\
\hline & 2. Use the VARIABLE knob to select VAriable Modulation function from the screen. \\
\hline & П\|ll \\
\hline
\end{tabular}
3. The measurements for modulation is appeared.

2. Press Position key and then use the VARIABLE knob to adjust

Position
(c) -0.920iv position of MATH waveform trace.

VARIABLE

Range \(\pm 12\) Div
3. Press Unit/div key and then use the VARIABLE knob to, depending on different Modulation Type options, adjust value of target unit of MATH waveform trace.


VARIABLE


Reference Levels Press Reference Level key from the lower menu for the High/ Middle/


Low of switching edges. The value is in percentage of the maximum switch voltage/current. User can adjust this value to ignore noise floors or null offset that is difficult to eliminate in current probes. This precents value specifies the threshold that is used to determine the switching edges.
Range \(0 \sim 100 \%\)
1. Use the VARIABLE knob or numerical keypad to input value.

VARIABLE

or

2. Press Set to default key to set value at \(50 \%\).

\section*{Safe Operation Area}

Using Safe Operation Area Measurements
Background \(\quad\)\begin{tabular}{l} 
The safe operating area (SOA) of the switching \\
transistor in a switch-mode power supply defines \\
the current that can run through the transistor at a \\
given voltage.
\end{tabular}


Ensure safe working practices are adhered to when working with live voltages. Failure to do so could lead to electric shock or loss of life.

Setup 1. Connect the positive terminal of the differential probe to the Drain(D) of the FET circuit, the negative terminal to the Source (S) which fixed connection on CH 1 or CH 3 , and the current probe is connecting to the Source (S) which fixed connection on CH 2 or CH 4 .
2. Connect to the power cord and turn on the power switch when all the connections have been made and configured.

Panel operation 1. Press the Power analysis key on the front panel.
2. Use the VARIABLE knob to select

VARIABLE the desired measurement as below and then press "Select" key to launch it.

3. The measurements for SOA appear.

3. Press the side bar menu in right side to set Y Axis Max/Min, X Axis Max/Min.

SOA Axes define the maximum and minimum value for both voltage (X-Axis) and current( Y Axis) based on the specification of the underlying power transistor.
\begin{tabular}{|c|}
\hline  \\
\hline  \\
\hline  \\
\hline  \\
\hline
\end{tabular}

Define Mask
1. Press Define Mask key from the lower menu.
2. Press Set Limits key. The function of "Set Limits" defines a mask

Set Limits
Set Points
based on the maximum voltage, maximum current, and power limits according to the data sheet of the underlying power transistor.
3. Alternatively, press Set Points key. The function of "Set Points" allows user to construct a mask in
a point-by-point manner. (up to 10 points are available).

Select
Point
1/9
4. Use the VARIABLE knob or numerical keypad to edit the coordinate \((X, Y)\) of the selected point.
5. Press Insert Point key to adding a new point in front of the selected point.

Insert
Point
\(\left.\begin{array}{ll|c} & \begin{array}{l}\text { 6. Press Delete Point key to delete the } \\ \text { currently set Point. }\end{array} & \begin{array}{c}\text { Delete } \\ \text { Point } \\ 1\end{array} \\ \hline \begin{array}{l}\text { Action on } \\ \text { Violation }\end{array} & \begin{array}{l}\text { 1. Press Action On Violation key from } \\ \text { the lower menu. }\end{array} & \begin{array}{c}\text { Action On } \\ \text { Violation }\end{array} \\ \begin{array}{l}\text { 2. Press Stop key(on/off) to } \\ \text { determine the action to be } \\ \text { taken(stopping or not) if the } \\ \text { power transistor fails in the SOA } \\ \text { test. }\end{array} & \begin{array}{c}\text { Action On } \\ \text { Violation }\end{array} \\ \text { Stop } \\ \text { On Off }\end{array}\right]\)

\section*{Transient \\ Using Transient Measurements}
\begin{tabular}{ll} 
Background & \begin{tabular}{l} 
The Transient analysis measures the time for the \\
output DC voltage to settle within a user-set \\
percentage of the expected output level after a \\
sudden change in output load (increase or \\
decrease in output current).
\end{tabular} \\
\hline\(!\) WARNING \begin{tabular}{l} 
Ensure safe working practices are adhered to when \\
working with live voltages. Failure to do so could lead \\
to electric shock or loss of life.
\end{tabular}
\end{tabular}

Setup 1. With the power disconnected from the power source, connect the differential voltage probe to the positive and negative output terminals.
2. Connect the passive probe (or differential probe) to the OUTPUT terminal of the circuit and the current probe to the OUTPUT terminal
3. Connect to the power cord and turn on the power switch when all the connections have been made and configured.

\section*{Panel operation 1. Press the Power analysis key on the front panel.}

2. Use the VARIABLE knob to select

VARIABLE Transient function from the screen.

3. The measurements for transient appear.

2. Press the Steady Vout key and then use the VARIABLE knob or numerical keypad to set steady output voltage value.
3. Press the Low Current key and then use the VARIABLE knob or numerical keypad to set low

Steady Vout
(4) 10.0 mV current value.
4. Press the High Current key and then use the VARIABLE knob or numerical keypad to set high current value.

\section*{Efficiency}

\section*{Using Efficiency Measurements}
\begin{tabular}{ll} 
Background & \begin{tabular}{l} 
Efficiency measurement is measuring the input \\
real power and output power in order to compute \\
the efficiency of the power supply \((\) Efficiency \(=\) \\
Power \((\) out \() / \operatorname{Power}(\) in \() \times 100)\).
\end{tabular}
\end{tabular}

Ensure safe working practices are adhered to when working with live voltages. Failure to do so could lead to electric shock or loss of life.

Setup 1. This function requires a 4-channel GDS-3000A oscilloscope to measure the input/output voltage and output current (2 channels GDS3000A series need to measure twice and calculate the percentage).

When testing, connect the differential probe to the output/input of the circuit and the current probe to the output/input of the circuit, and set the corresponding voltage/current settings on the oscilloscope.
2. Connect to the power cord and turn on the power switch when all the connections have been made and configured.

Panel operation 1. Press the Power analysis key on the front panel.
2. Use the VARIABLE knob to select

VARIABLE Efficiency function from the screen.

\section*{\(\frac{\mathrm{P}_{\mathrm{p}}}{\mathrm{P}_{1}} \%\)}

Efficiency
3. The measurements for efficiency appear.


Source
1. Press Source key from the lower menu.
2. Choose the Voltage input channel

Input V CH1 from the side menu.
Range \(\mathrm{CH} 1 \sim 4\)
3. Choose the Current input channel from the side menu.

Range \(\mathrm{CH} 1 \sim 4\)
4. Choose the Voltage output channel from the side menu.

Range \(\mathrm{CH} 1 \sim 4\)
5. Choose the Current output channel from the side menu.

Range \(\mathrm{CH} 1 \sim 4\)
Statistics
1. Press Statistics key from the lower menu.
\begin{tabular}{|c|c|c|}
\hline & 2. Press Statistics (on/off) key to turn on or off Statistics. & Statistics On Off \\
\hline & 3. Press the Mean \(\mathcal{E}\) Std Dev Samples key and then use the VARIABLE knob or numerical keypad to set value of Mean and standard deviation of the sample. &  \\
\hline & Range \(\quad 2 \sim 1000\) & \\
\hline & 4. Press the Reset Statistics key to reset the value of Statistics. & \[
\begin{gathered}
\text { Reset } \\
\text { Statistics }
\end{gathered}
\] \\
\hline Gating & To set the measurement area, press Gating key from the bottom menu and select the gating mode from the side menu. & \begin{tabular}{c} 
Gating \\
(Full Record) \\
\hline
\end{tabular} \\
\hline & Gating \(\begin{aligned} & \text { Off (Full Record), Scre } \\ & \text { Cursors }\end{aligned}\) & een, Between \\
\hline
\end{tabular}

\section*{B-H curve}

\section*{Using B-H curve Measurements}
\begin{tabular}{ll} 
Background & \begin{tabular}{l} 
B-H curve measurements are often used to verify \\
the saturation (or lack thereof) of the magnetic \\
elements in a switching supply and provide a \\
measure of the energy lost per cycle in a unit \\
volume of core material.
\end{tabular} \\
\hline Setup WARNING \begin{tabular}{l} 
Ensure safe working practices are adhered to when \\
working with live voltages. Failure to do so could lead \\
to electric shock or loss of life.
\end{tabular} \\
\hline \begin{tabular}{l} 
1. Connect the CH1/2 probes (or CH3/CH4) to \\
the transformer's N1, N2 side of the circuit
\end{tabular} \\
\begin{tabular}{l} 
2. Connect to the power cord and turn on the \\
power switch when all the connections have \\
been made and configured.
\end{tabular} \\
\hline
\end{tabular}

Panel operation 1. Press the Power analysis key on the front panel.

Power Analysis
2. User the VARIABLE knob to select

VARIABLE \(B-H\) curve function from the screen.

3. The measurements for B-H curve appear.


Define inputs
1. Press Define Inputs key from the

Define
Inputs

The voltage across a waveform which acquired with a differential voltage probe, is set as the voltage source. The current through the device is captured with a current probe. The hysteresis plot is presented as the integrated voltage across the magnetic device versus the current through the device.
2. 2 CH model is available for one input setting.
(1) Vol tage
(2) Current
(3) Vol tage
(4) Current

Fixed CH1 or CH3 is Voltage input.
CH2 or CH4 is Current input.
1. Press Setup key from the lower menu.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{8}{*}{} & Press the Windings & Custon & \multirow[t]{2}{*}{\begin{tabular}{l}
Windings \\
1
\end{tabular}} \\
\hline & key and then use the & 1 & \\
\hline & \multirow[t]{6}{*}{VARIABLE knob or numerical keypad to set value of windings magnetic element.} & 18 & \\
\hline & & 190 & \\
\hline & & 1888 & \\
\hline & & 18880 & \\
\hline & & 108888 & \\
\hline & & 18вв日өв & \\
\hline & Range 1~1000000 & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{8}{*}{3. Press the Cross Section Area( \(m m^{2}\) ) key and then use the VARIABLE knob or numerical keypad to set value of Cross Section Area.}} & Custom & \\
\hline & & 1. өв8е-9 & \\
\hline & & 10. ө8ве-9 & \\
\hline & & 108. 088е-9 & \multirow[t]{3}{*}{\begin{tabular}{c} 
Cross Section \\
Area \(\left(\mathrm{mm}^{2}\right)\) \\
1. \(10 \mathrm{Ble}+6\) \\
\hline
\end{tabular}} \\
\hline & & 1. 8808e-6 & \\
\hline & & 10. өв8е-6 & \\
\hline & & 108. 088е-6 & \\
\hline & & 1. ө88е-3 & \\
\hline \multicolumn{3}{|c|}{Range \(1.000 \sim 1.000 \mathrm{e}+6\)} & \\
\hline \multirow[t]{8}{*}{} & Press the Magnetic & Custom & \multirow[t]{7}{*}{} \\
\hline & \multirow[t]{6}{*}{Length( \(m\) ) key and then use the VARIABLE knob or numerical keypad to set value of Magnetic Length.} & 1 m & \\
\hline & & \({ }^{18 \mathrm{~m}}\) & \\
\hline & & 188m & \\
\hline & & 1 & \\
\hline & & 18 & \\
\hline & & 108 & \\
\hline & Range 1.000~100.00 & & \\
\hline
\end{tabular}
1. Press Position key from the lower menu. Use the VARIABLE knob or
 numerical keypad to adjust the position of (B) magnetic flux Density \& (H) Magnetic Field Strength on the screen.


Range \(\quad+/-12\) divisions
Scale
1. Press Scale key from the lower menu. Use the VARIABLE knob or (B) 2.00 uT (H) \(1000 \mathrm{~V} / \mathrm{m}\) numerical keypad to adjust the scale of (B) magnetic flux Density VARIABLE \& (H) Magnetic Field Strength.

\section*{Control Loop Response}

Using Control Loop Response Measurements
\begin{tabular}{ll} 
Background & \begin{tabular}{l} 
The Control Loop Response measurement \\
performs a gain/phase plot over frequency sweep. \\
This is used to determine the margin of a control \\
loop.
\end{tabular} \\
\hline Setup WARNING \begin{tabular}{l} 
Ensure safe working practices are adhered to when \\
working with live voltages. Failure to do so could lead \\
to electric shock or loss of life.
\end{tabular} \\
\hline \begin{tabular}{l} 
1. \begin{tabular}{l} 
Connect the probe of the corresponding \\
channel to the INPUT/OUTPUT side of the \\
DUT and connect the output of AWG to the \\
Injection Transformer.
\end{tabular} \\
2. Connect to the power cord and turn on the \\
power switch when all the connections have \\
been made and configured.
\end{tabular} \\
\hline Panel operation \begin{tabular}{l} 
1. \begin{tabular}{l} 
Press the Power analysis key on the \\
front panel.
\end{tabular} \\
\begin{tabular}{l} 
2. \begin{tabular}{l} 
Use the VARIABLE knob to select \\
Control Loop Response function \\
from the screen.
\end{tabular} \\
Analysis
\end{tabular} \\
Control Loop \\
Response
\end{tabular}
\end{tabular}
3. The measurements for Control Loop Response appear.

Example: an example with complete result of control loop response


Note
Please be aware that the total time required for measuring the frequency response may vary according to your setup, e.g. the number of points per decade or when sweeping at lower frequencies.

Please note that the control loop response measurement only allows a DSO record length of 10,000 points.
4. In Setting mode (Run button appeared), press the Run button to start testing the control loop response.
5. The data acquisition will stop
automatically when the stop frequency is reached. The © button is then toggled back to STOP and the data is ready for analysis.

If the user needs to cancel an ongoing control loop response measurement, the © button can be pressed.
6. Using the second Analyze menu button will switch to the Analysis mode. Details regarding this mode will be explained in later sections.
7. Press the icon to return to the upper-level menu.

Source

Background Use the Source menu to define the input source and output source.
\(!\) Note
Please make sure that the two analog channels used by the control loop response measurement muse be activated first.

Panel operation
1. Toggle the Source button.

Source
2. Press Input Source from the side menu and select the channel that is connected to the
 input of the DUT.
3. Press Output Source from the side menu and select the channel that is connected to the
 output of the DUT.

Setup amplitude profile
\begin{tabular}{ll} 
Background & \begin{tabular}{l} 
The function of amplitude profile aims to \\
customize the signal level across the test bands.
\end{tabular}
\end{tabular}

Panel operation 1. Press the Setup button.

this option, one can construct a linear sweep rather than a staircase amplitude profile.

Setup AWG

Background Use the Setup menu to configure the AWG output

Panel operation 1. Press the Setup button.

Setup

FWG
Setup
Log Linear Points/Decade
(1) 10 preset number of points. By pressing the Points/Decade button and using the VARIABLE knob, you will define the number of points per decade of frequency.

Example
For the \(100-1000 \mathrm{~Hz}\) decade and 15 points per decade, the frequency sweep step is given by \((1000-100) / 15=60 \mathrm{~Hz}\), i.e. measurements will be taken at \(100 \mathrm{~Hz}, 160 \mathrm{~Hz}, 220 \mathrm{~Hz}, 280 \mathrm{~Hz}, \ldots\), 940 Hz .

Range \(10,15,30,45,90\) for logarithmic scale 2~1000 for linear scale
3. Then press the AWG Setup button from the side menu to configure

Setup the frequency-swept input signal.

Start
1. Press Start button to configure the start frequency.

Start
100.0 Hz
2. Use the VARIABLE knob or numerical keypad to input value.
```

Start Frequency
10|
Press "Menu Off" key to exit.

```
3. Press Go Back to return to the previous menu.

Range \(\quad 20 \mathrm{~Hz} \sim 25 \mathrm{MHz}\)
\begin{tabular}{ll|c} 
Stop & \begin{tabular}{l} 
1. Press Stop to configure the stop \\
frequency.
\end{tabular} & \begin{tabular}{c} 
Stop \\
25.80 NHz
\end{tabular} \\
\hline
\end{tabular}
2. Use the VARIABLE knob or numerical keypad to input value.

\section*{Stop Frequency}
```

 5 0 0
    ```

Press "Menu Off" key to exit.
3. Press Go Back to return to the previous menu.

Range \(\quad 20 \mathrm{~Hz} \sim 25 \mathrm{MHz}\)
Load
1. Press Load button to configure the load resistance.
2. Press repeatedly the Load button to select the \(50 \Omega\) or High Z load resistance.

Range \(\quad 50 \Omega\), High Z
Go Back
Press Go Back to return to the Setup menu.

Quit

Background Quit the control loop response measurement.
Panel operation Toggle the Quit button to return the Power Analysis menu.

\section*{Analysis mode}

There are four main functions in the Analyze menu. Users can perform the cursor measurement, adjust the scale and the offset of the plot, overlap several test waveforms together and save measurement results for future recall as well as post-processing on the computer.

Measure

Background Control loop response measurement uses cursors to precisely measure the data in absolute or relative values.

Panel operation
1. Under Analysis mode, press the Measure button to enter the Measure menu.
2. Press the Select button and use the VARIABLE knob and then the Select key to set the active trace, showing on top of all other traces, and refresh the cursor measurement accordingly.

Range H1, H2, H3, H4 (depends on how many traces have been stored in the system memory)
3. The cursor 1 and 2 will appear

Cursor
On \(0 f f\) along the active trace whenever the cursor state turns on. Press Select button to change the active cursor highlighted in green color.

Move the active cursor along the VARIABLE active trace using the VARIABLE knob. The corresponding frequency value in Hz (X-axis), gain value in dB (left Y -axis) and phase value in degree (right \(Y\) axis) messages are shown below.


A delta between two cursor measurements is also shown below.
```

\Delta:(7.22dB , 7.68 , 76.76Hz

```

\section*{Bode Plot}
Background \(\quad\)\begin{tabular}{l} 
The Scale Bode Plot menu allows the user to \\
adjust the scale and the offset of the plot on the \\
display.
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Panel operation & \begin{tabular}{l}
1. When in Analysis mode, press the Plot Bode Plot button to enter the scale bode plot menu. \\
2. There are four settings which can be Gain Scale, Gain Offset, Phase Scale, and Offset, respectively. Press the Autosca to automatically preset these param suitable for viewing the displayed tra
\end{tabular} & \begin{tabular}{l}
\[
\begin{gathered}
\text { Plot } \\
\text { Bode Plot }
\end{gathered}
\] \\
e adjusted: nd Phase cale button meters traces.
\end{tabular} \\
\hline \multirow[t]{2}{*}{Gain Scale} & 1. Press the Gain Scale from the side menu and use the VARIABLE knob to adjust the value. & \[
\overbrace{\text { Sain Scale }}^{\text {SdB }}
\] \\
\hline & Range \(\quad 5,10,15,20 \mathrm{~dB}\) & \\
\hline \multirow[t]{2}{*}{Gain Offset} & 1. Press the Gain Offset from the side menu and use the VARIABLE knob to adjust the value. & Gain Offset -77.00dB \\
\hline & Range \(\begin{array}{ll}(-300+4 * \text { Gain Scale }) \sim \\ (300-4 * G \text { Gin Scale }) d B\end{array}\) & \\
\hline \multirow[t]{2}{*}{Phase Scale} & 1. Press the Phase Scale from the side menu and use the VARIABLE knob to adjust the value. & Phase Scale
\(45^{\circ}\) \\
\hline & Range \(\quad 15^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}\) & \\
\hline \multirow[t]{2}{*}{Phase Offset} & 1. Press the Phase Offset from the side menu and use the VARIABLE knob to adjust the value. & \begin{tabular}{l}
Phase Offset \\
() \(-27.90^{\circ}\)
\end{tabular} \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
Range ( \(-720+4 *\) Phase Scale) ~ \\
(720-4*Phase Scale) degrees
\end{tabular}} \\
\hline Autoscale & 1. Alternatively, users can press the Autoscale from the side menu to have the system automatically adjust these parameter to fit in all displayed traces. & Autoscale \\
\hline
\end{tabular}

\section*{Overlay}

Background User is able to recall the previously saved test waveforms for comparison. Waveforms corresponding to a maximum of four experimental trials can be simultaneously shown on the display.

Panel operation 1. Press the Add button to select the previously saved data and display the data on the screen.

Browse through the folders and files to locate a FRA file (file.FRD) and press the Select key to recall it. A pop-up window then subsequently confirms the success of the operation. For a successful recall, the display will immediately show the newly recalled data on the current plot.

2. Press the Select button to choose which group of waveform data is to be operated.
3. Press the Remove button to delete selected waveform data and remove APP.
4. Press the Display On/Off button to display or not display selected waveform data.

Display
On Off
5. Press the Normal/Gain Only/Phase

Only button to select display item.

Normal Display both Gain and Phase.
Gain Only Display only Gain
Phase Only Display only Phase

File Utilities
\begin{tabular}{|c|c|c|}
\hline Background & \multicolumn{2}{|l|}{With File Utilities, users can save in-memory data into files(in both binary and CSV formats), and recap test conditions in the Info panel.} \\
\hline Panel operation & 1. When in Analysis mode, press the File Utility button to enter the File utility. & \[
\begin{gathered}
\text { File } \\
\text { Utilities }
\end{gathered}
\] \\
\hline Select & 2. Select target waveform to be saved. & \[
\begin{aligned}
& \text { Select } \\
& \text { H1: Recent }
\end{aligned}
\] \\
\hline Save to File (.FRD) & 3. Press the Save to File (.FRD) from the side menu and save the present plotted data to a file for future reference. & \[
\begin{aligned}
& \text { Save to } \\
& \text { File(. FRD) }
\end{aligned}
\] \\
\hline Save to CSV & 4. Press the Save to CSV button to save the present plotted data in the CSV format for post processing on the computer. & Sove to csv \\
\hline Info & 5. For more information regarding the current plotted data, press this Info button. & Info \\
\hline
\end{tabular}


Go Back
6. Press Go Back button to return to the Setting menu.

\section*{Power Supply Rejection Ratio (PSRR)}

\section*{Using PSRR Measurements}
\begin{tabular}{ll} 
Background \begin{tabular}{l} 
The Power Supply Rejection Ratio test is used to \\
verify the rejection of ripple noise in power supply \\
devices over different frequency ranges.
\end{tabular} \\
\hline Setup WARNING \begin{tabular}{l} 
Ensure safe working practices are adhered to when \\
working with live voltages. Failure to do so could lead \\
to electric shock or loss of life.
\end{tabular} \\
\hline \begin{tabular}{l} 
1. For example, connect the corresponding probe \\
to the INPUT/OUTPUT terminal, and connect \\
the AWG output to the INPUT terminal of the \\
operation amplifier.
\end{tabular} \\
\begin{tabular}{l} 
2. Connect to the power cord and turn on the \\
power switch when all the connections have \\
been made and configured.
\end{tabular} \\
\hline
\end{tabular}

Panel operation 1. Press the Power analysis key on the front panel.

Power Analysis
2. Use the VARIABLE knob to select

VARIABLE \(P S R R\) function from the screen.


\section*{3. The measurements for PSRR appear.}

Example: a PSRR test graph


Note
Please be aware that the total time required for measuring the frequency response may vary according to your setup, e.g. the number of points per decade or when sweeping at lower frequencies.

Please note that the control loop response measurement only allows a DSO record length of 10,000 points.
4. In Setting mode (Run button appeared), press the Run button to start the frequency response analysis.
5. The data acquisition will stop
automatically when the stop frequency is reached. The © button is then toggled back to STOP and the data is ready for analysis.

If the user needs to cancel an ongoing control loop response measurement, the © button can be pressed.
6. Using the second Analyze menu button will switch to the Analysis mode. Details regarding this mode will be explained in later sections.
7. Press the icon to return to the
-


\section*{Source}

Please refer to section "Source" on page 273.
Setup amplitude profile
Please refer to paragraph "Setup amplitude profile" on page 273.

\section*{Setup AWG}

Please refer to paragraph "Setup AWG" on page 275.
Quit
Please refer to paragraph "Quit" on page 277.
Analysis mode
Please refer to section "Analysis mode" on page 277.
Measure
Please refer to paragraph "Measure" on page 277.

\section*{Bode Plot}

Please refer to paragraph "Bode Plot" on page 278.
Overlay
Please refer to paragraph "Overlay" on page 280.
File Utilities
Please refer to paragraph "File Utilities" on page 281.

\section*{Turn On/Off}

\section*{Using Turn On/Off Measurements}
\begin{tabular}{ll} 
Background & \begin{tabular}{l} 
The Turn On measurement determines how fast a \\
turned on power supply takes to reach \(85 \%\) of its \\
steady state output.
\end{tabular} \\
& \begin{tabular}{l} 
The Turn Off measurement determines how fast a \\
turned off power supply takes to reduce its output \\
voltage to 15\% of maximum.
\end{tabular} \\
\hline
\end{tabular}


Ensure safe working practices are adhered to when working with live voltages. Failure to do so could lead to electric shock or loss of life.

Setup 1. Connect the differential probe and current probe of the corresponding channel to the INPUT terminal of the circuit, and connect the OUTPUT terminal to another set of passive probes.
2. Connect to the power cord and turn on the power switch when all the connections have been made and configured.

Panel operation
1. Press the Power analysis key on the front panel.
2. Use the VARIABLE knob to select

VARIABLE Turn On/Off function from the screen.

3. The measurements for Turn On/Off appear.


Source
4. Toggle the Source button.

5. Press Input \(V\) from the side menu and select the channel that is connected to the input of the DUT.

Range
\(\mathrm{CH} 1 \sim \mathrm{CH} 4\)
6. Press Output \(V\) from the side menu and select the channel that is connected to the
 output of the DUT.
\[
\text { Range } \quad \mathrm{CH} 1 \sim \mathrm{CH} 4
\]
7. Press Input I from the side menu and select the channel that is connected to the
 output of the DUT.

Range \(\quad \mathrm{CH} 1 \sim \mathrm{CH} 4\)
\begin{tabular}{|c|c|c|c|c|}
\hline Setup & & Press Setup key from menu. & & Setup \\
\hline & & Press the Duration key & User & Duration \\
\hline & & and then use the & 25 & 588m \\
\hline & & VARIABLE knob or & 15 & \\
\hline & & numerical keypad to & 588n5 & \\
\hline & & set value of Duration. & & \\
\hline & & Range \(500 \mathrm{~ms} / 1 \mathrm{~s} /\) & User & \\
\hline
\end{tabular}
3. Press Save Setup key to save current setting (select
Duration:User followed by pressing Apply key for next time use).
4. Set a suitable Duration followed by pressing the Apply key to begin the test.

Single the panel to wait for trigger.

Meas. Display 1. When trigger occurs and it enters the Stop status, press Meas.
Display key from the lower menu to choose measurement item.
2. Press OFF key to turn off the measured result on the screen and return back to the level prior to
 executing test.
3. When "Turn On" is selected for Test and the trigger occurs and it

Time(Tr) enters the Stop status, the measurement of Turn On/Off Delay (Td), Rise Time(Tr) \& Inrush (Ic) will be executed and the measured value will be displayed accordingly.
4. When "Turn Off" is selected for Test and the trigger occurs and it enters the Stop status, the measurement of Turn On/Off Delay (Td) will be executed and the measured value will be displayed accordingly.
5. Press Test key from bottom menu to select either executing Test On or Test Off measurement.

Gating
To set the measurement area, press Gating key from the bottom menu

Gating
Screen and select the gating mode from the side menu.

Gating Off (Full Record), Screen, Between Cursors

\section*{Spectrum analyzer}
Spectrum Analyzer operation ..... 292
Overview ..... 292
Display Overview ..... 292
Connections ..... 294
Configuration ..... 294
Selecting the source ..... 294
Setting the trace mode options (Trace type) ..... 295
Setting the Detection Method ..... 297
Configuring the Frequencies and Span ..... 299
Configuring the Bandwidth ..... 302
Configuring the Amplitude ..... 303
Display ..... 304
Measurement ..... 307
Using the Search function ..... 307
Using the Cursors ..... 308

\section*{Spectrum Analyzer operation}

Overview
\begin{tabular}{ll} 
Background & \begin{tabular}{l} 
The Spectrum Analyzer is a dual channel \\
spectrum analyzer with spectrogram specially \\
designed for the GDS-3000A series. It \\
conveniently allows users to analyze the signal in \\
the frequency domain.
\end{tabular} \\
\hline Windows & \begin{tabular}{l} 
Hanning, Rectangular, Hamming, Blackman
\end{tabular} \\
Frequency range & \begin{tabular}{l} 
DC to 2.5GHz Max. (Frequency which exceeds \\
analog front end bandwidth is uncalibrated)
\end{tabular} \\
\hline 1kHz to 2.5GHz Max.
\end{tabular}
\begin{tabular}{|c|c|}
\hline Main display & The Spectrum Analyzer main display can show various spectrum traces of the selected analog source channel, such as the normal, max-hold, min-hold and averaged trace. The start and stop frequency of the span are displayed at both top sides. The remaining frequency span information is displayed at the bottom as well as the vertical scale. The zero level is shown for reference on the Y axis on the left. When the search function is enabled, frequency peaks will be detected and summarized in the Events State View window at the bottom left of the display. \\
\hline
\end{tabular}


\author{
Peaks
}

\section*{\(\nabla\) \\ Peak mark \\ Current active peak \\ \(\nabla: 1\) \\ Active peak marker}

\section*{Dverall: 3}

Total number of peaks detected (according to the search function parameters).

\section*{Connections}
\begin{tabular}{ll} 
Background & \begin{tabular}{l} 
The Spectrum Analyzer uses the analog channel \\
inputs of the GDS-3000A SERIES.
\end{tabular} \\
\hline Connection & \begin{tabular}{l} 
1. \begin{tabular}{l} 
Connect the desired signal source to one of the \\
analog channel input of the DSO using BNC \\
connectors.
\end{tabular}
\end{tabular}
\end{tabular}

\section*{Configuration}

Setting up a spectrum trace can be done by following the subsequent steps: selecting the source turning on the trace with its associated detection options, configuring the frequencies and span, configuring the window type and the frequency resolution and lastly configuring the vertical scale.

Selecting the source
Background \(\quad\)\begin{tabular}{l} 
Before any visualization or measurement can be \\
performed on the spectrum analyzer, it must first \\
be associated with a source.
\end{tabular}

Panel Operation 1. Press the Spectrum key.

Spectrum

2. Press Input Setup from the bottom menu.

Input
Setup
3. Press the Select in the right side to select the first spectrum analyzer (SA1) or SA2 setting.

Select SA1
4. Press the Input in the right side to turn On or Off the SA1 or SA2 input.
5. Press Source from the side menu and choose a source.

Range \(\quad \mathrm{CH} 1 \sim \mathrm{CH} 4\)

\section*{Setting the trace mode options (Trace type)}
\(\left.\begin{array}{ll}\text { Background } & \begin{array}{l}\text { Trace options determine how the trace data is } \\
\text { stored or manipulated before being displayed. } \\
\text { The Spectrum Analyzer updates the trace } \\
\text { according to the type of trace. }\end{array} \\
\hline \text { Definitions } & \begin{array}{l}\text { Normal: the Spectrum Analyzer continuously } \\
\text { updates the display with each sweep. }\end{array} \\
\text { Max/Min Hold: the maximum/minimum points } \\
\text { are maintained for the selected trace. The trace } \\
\text { points are updated each sweep if a new } \\
\text { maximum/minimum point is found. }\end{array}\right\}\)\begin{tabular}{l} 
Average: this mode averages the trace for a user- \\
defined number of times before it is displayed. \\
This type of trace smooths the noise level, but it is \\
slower to update.
\end{tabular}

7. From the side menu, press once on the Average button to toggle this trace option to On. Use the
 VARIABLE knob to change the number of sweeps the average will be based on. Press again to toggle it to Off.
\[
\text { Range } \quad 2 \sim 512
\]
8. Press the Reset Spectrum Traces button to clear all current active traces on the screen and then

Reset
Spectrum
Traces restart the spectrum calculation process.

The four different trace types can be activated at the same time, allowing a quick comparison for the maximum, minimum and averaged spectrum magnitude of the underlying signal.

Example


Setting the Detection Method
Background \(\quad\)\begin{tabular}{l} 
Each time the Spectrum Analyzer samples data, a \\
number of samples are usually taken for each \\
point to display, known as a sample bucket. The \\
actual value of each point is determined by the \\
detection method.
\end{tabular}

Each trace type (Normal, Max and Min Hold, Average) can use a different detection method.

\author{
Panel Operation
}
1. Press the Spectrum key to enter the

Spectrum Analyzer menu.

Spectrum


SA1
Setup
3. Press the Detection button from the bottom menu.

\section*{Detection \\ Method \\ Auto}
4. By default, the detection method is set to Auto. When selected, the analyzer automatically chooses a detection method suitable for each

\section*{Detection} Method

Auto
Manual type of trace.
5. Press the button Auto/Manual once to toggle the detection method to Manual and be able to fine tune the detection method for each type of trace. Press the Auto/Manual button once more to toggle it back to Auto.
6. Press on the Normal

Trace button to see a list of detection options. Use the
 VARIABLE knob and the Select key to select one.
7. Repeat the same operation for the Max Hold Trace button.
8. Repeat the same operation for the Min Hold Trace button.
```

Max Hold
Trace
Sample

```

Min Hold
Trace
Sample

\section*{9. Repeat the same operation for the Average Trace button.}

\section*{Average \\ Trace \\ Sample}

Configuring the Frequencies and Span

Center Frequency The Center Frequency function sets the center frequency. The display will be centered on this frequency.

Panel Operation 1. Press the Spectrum key to enter the Spectrum Analyzer menu.

Spectrum


SA1
Setup
3. Press the Freq \& Span button to enter the frequencies and span

Frequency
\& Span menu.
4. Press the Center button to display a list of frequencies stepresolution.
the VARIABLE knob can be used to select one. Press again on the Center button; the VARIABLE knob can
 now be used to set the frequency in increments of the chosen step resolution.
5. Or use the numerical keypad to input value.

\footnotetext{
Center Frequency
1
Press "Menu Off" key to exit.
}


Start and Stop The Start and Stop frequencies can also be used to Frequencies specify the span frequency. adjusted when configuring the Center and the Span.

Conversely, configuring the Start and Stop frequencies will automatically configure the Center and the Span.

The Stop frequency must always be higher than the Start frequency. As a consequence, when one crosses the other's value, the Start or Stop frequency will automatically be adjusted to the next highest/smallest step.

Panel Operation

10. Use the numerical keypad to input value.
```

Start Frequency
Press "Menu Off" key to exit.

```

Press Go Back to return to the previous menu and validate the

Go Back user-defined value.

Range Start: \(0 \mathrm{~Hz} \sim 2.4999 \mathrm{GHz}\)

\section*{Stop: \(500 \mathrm{~Hz} \sim 2.5 \mathrm{GHz}\)}
\begin{tabular}{ll|l} 
Peak to center & \begin{tabular}{l} 
Pressing this button will set the \\
frequency location of the spectrum \\
peak as the new center frequency of \\
the Spectrum Analyzer.
\end{tabular} & \begin{tabular}{c}
\(\nabla\) \\
Conter
\end{tabular} \\
\hline
\end{tabular}

\section*{Configuring the Bandwidth}
Background \(\quad\)\begin{tabular}{l} 
The bandwidth menu gives the possibility of \\
configuring the resolution bandwidth as well as \\
the type of window used for the spectral analysis.
\end{tabular}

Panel Operation 1. Press the Spectrum key to enter the Spectrum Analyzer menu.

Spectrum ,

SA1
Setup
3. Press the \(R B W\) button to enter the bandwidth menu.
4. The resolution bandwidth can be set automatically according to a configurable ratio defined between the span and the frequency resolution. To choose that option, set the RBW Mode button to Auto, press on the Span: \(R B W\) button and tune the ratio using the VARIABLE knob. Range \(\quad 5,000: 1 \sim 1,000: 1\)
5. Alternatively, set the \(R B W\). Mode button to Manual to manually configure the frequency resolution.
6. Press the \(R B W\) button to select the RBW frequency. the VARIABLE

REW
(4) 5.0000 kHz
knob can be used to select.
Window type The type of window used for spectrum analysis can be chosen. Each window type is characterized by making a tradeoff between the frequency resolution and the amplitude accuracy. Please see the note below.
7. Press the Window button and change the window type using the VARIABLE knob. Press
\begin{tabular}{|l|l|l|}
\hline Haming & Windaun \\
\hline Rectangul ler & Hending \\
\hline Hesming & \\
\hline Blackmen & \\
\hline
\end{tabular} again the Window button to confirm the change.


Hanning and Hamming windows are both good to analyze periodic signals. The rectangular window is more suitable for single shot phenomenon. The Blackman window is most suitable for amplitude measurement on periodic signals. Please refer to the Section "Math operations", paragraph "FFT Overview" on page 66 and 68 for more details.

Configuring the Amplitude
\begin{tabular}{ll} 
Background & \begin{tabular}{l} 
The vertical scale and the zero reference position \\
can be configured in this menu.
\end{tabular} \\
\hline
\end{tabular}

Panel Operation 1. Press the Spectrum key to enter the Spectrum Analyzer menu.

Spectrum

2. Press the SA1 setup or SA2 setup to enter the trace setting.
```

SA1
Setup

```
3. Press the Amplitude button to enter the vertical scale menu.
4. Choose a vertical unit by toggling the Vertical Units button to \(d B V\)
 RMS, Linear RMS or \(d B m\) using the VARIABLE knob.


When the setting unit is dBm , connect a 50 Ohm feed through termination on BNC.
5. You can define the scale of the vertical axis by pressing on the Unit/div button and using the VARIABLE knob.
\[
\begin{array}{ll}
\text { Range } & 1 \mathrm{~dB} \sim 20 \mathrm{~dB}(\mathrm{dBV} \text { RMS, dBm) } \\
& 2 \mathrm{mV} \sim 1 \mathrm{kV} \text { (Linear RMS) } \\
\hline
\end{array}
\]
6. You can define the zero level position by pressing on the Position button and using the VARIABLE knob.

Range \(\quad-12.00 \sim 12.00 \mathrm{Div}\)
AWG
AWG fast switch button. This button is used for user to observe the AWG waveform change easily in the spectrum after changing waveform parameters.

Display
\begin{tabular}{ll} 
Background & \begin{tabular}{l} 
Display key allows user to select either normal \\
spectrum display or spectrogram display, which is \\
useful for viewing frequency or power in the time \\
domain. Use the VARIABLE knob to select.
\end{tabular} \\
\hline
\end{tabular}

Panel Operation
1. Press the Spectrum key to enter the Spectrum Analyzer menu.
(1)

2. Press Display key from the side menu.

An example of both spectrum and spectrogram displaying on the LCD screen at the same time.

3. Choose a display mode by toggling between
 Spectrum button and Spectrogram button using the VARIABLE knob.
4. In the midst of spectrogram execution, press the Run/Stop key
 and turn the VARIABLE knob to observe the correlation between

VARIABLE slice and frequency domain from the spectrogram display.



Operation

Timestamp
5. Press the Run/Stop key followed by pressing the Slice key and rotate the VARIABLE knob to observe input signal. And it's spectrogram on the same date
 time axis.

\section*{VARIABLE}

6. The information on the Timestamp Timestamp \(-6.8275\) displays current slice time.
\(-8.9815\)

\section*{Measurement}

The Spectrum Analyzer of the GDS-3000A is compatible with a certain number of measurement tools such as the search function and the use of cursors, enabling detailed analysis of the signal characteristics in the frequency domain.

Using the Search function

Background When the Spectrum Analyzer is on, pressing the Search key and turning on the Search function will automatically pre-configure the Search Type and the Source (respectively set to SP Peak and \(S P\) ) in order to search for spectrum peaks. Please also note that it is not possible to search for spectrum peaks if the Spectrum Analyzer Option is not on.

Panel Operation 1. When the Spectrum Analyzer is on, press the Search key.
2. Press the Search button from the bottom menu to turn the Search function on.
3. Configure the Search Method by pressing the Method button from the bottom menu and choose between two methods:

Max Peak: search for a defined number of peaks. Threshold: search for peaks above a defined threshold level.


Search
On Off

Method
Max Peak

Method
Max Peak
(0) 1

Threshold
อ. В0तBV
4. You can configure the Event state display by toggling the State Info button either to Mark or to Peak.
 active peak.

Peak: gives frequency and level details of the current active peak.

State Info Mark Peak
5. Press on the Peak Table button from the bottom menu to examine all the searched spectrum peaks in a tabulated form or save it as files on an external USB drive.


Note

For more details about the Search function, please refer to the section "Search" on page 175 for more details.

\section*{Using the Cursors}
Background Horizontal and vertical cursors can be used
1. When the Spectrum Analyzer is on, press the cursor key.

Cursor

2. Move the horizontal cursors along the trace to perform accurate measurement of frequency and level. Use the horizontal cursor to further measure points of interest in both absolute and delta values.


For more details about the cursorfunction, please refer to the section "Cursor" on page 59 for more details.

Use the Save / Recall menu to save the spectrum data as a CSV file in SA mode, but you can't recall the file to the screen.

\section*{Applications}
Introduction ..... 310
Overview ..... 310
Running Applications ..... 311
Go-NoGo application ..... 313
DVM application ..... 318
Data Log application ..... 320
Digital Filter application ..... 322
Mask application ..... 324
Select the source channel ..... 324
Configure the mask violation ..... 325
Auto Mask ..... 326
User Defined Mask/ Create Mask ..... 329
User-defined Mask File Format ..... 333
FRA application ..... 335
Connections ..... 336
Launching the FRA application ..... 337
Setting mode ..... 337
FRA Run ..... 338

\section*{Introduction}

Overview
\begin{tabular}{|c|c|c|}
\hline Background & \multicolumn{2}{|l|}{The Application (APP) function allows different software applications to be run. The GDS-3000A comes pre-installed with a number of apps, as described below. Please see your local GW Instek distributor for the latest information on new apps.} \\
\hline \multirow[t]{4}{*}{Included Applications} & Go/No-Go & The Go/No-Go application can be used to set threshold boundaries for input signals. Go/No-Go tests to see if a waveform will fit inside a userspecified maximum and minimum amplitude boundary (template). \\
\hline & DVM & The DVM application displays a digital voltage meter readout that floats on the top left-hand side of the screen. \\
\hline & Data Log & The Data Log app will log waveform data and/or screenshots at set intervals for set duration of time. \\
\hline & Digital Filter & Adds a digital low, high or band pass filter to any of the input channels. Each filter can have a user-defined cutoff frequency set. \\
\hline
\end{tabular}
\begin{tabular}{ll}
\begin{tabular}{l} 
Frequency \\
response analyzer \\
Analyzer (FRA) is a feature \\
application for digital storage \\
oscilloscope with an integrated \\
arbitrary waveform generator.
\end{tabular} \\
\hline Mask & \begin{tabular}{l} 
Create shape templates for \\
signal comparison.
\end{tabular} \\
\hline \begin{tabular}{l} 
Mount Remote \\
Disk
\end{tabular} & \begin{tabular}{l} 
This app allows the scope to \\
mount a network share drive.
\end{tabular} \\
\hline Demo & \begin{tabular}{l} 
The Demo app, when combined \\
with the GDB-03 demo board, \\
allows the scope to trigger a \\
number of different signals from \\
the demo board.
\end{tabular} \\
\hline
\end{tabular}

\section*{Running Applications}
\begin{tabular}{ll} 
Background & \begin{tabular}{l} 
The GDS-3000A comes pre-installed with a \\
number of apps which can be activated from a \\
dedicated menu.
\end{tabular}
\end{tabular}

Panel Operation 1. Press the APP key.

2. Press APP from the bottom menu.
3. Scroll through each application VARIABLE using the VARIABLE knob.


4. Select an application by pressing the Select key twice.

\section*{Go-NoGo application}

Background The Go-NoGo test checks if a waveform fits inside a user-specified maximum and minimum boundary. Boundary templates are automatically created from a source channel. Boundary tolerances and violation conditions can be set.


Choose the Go_NoGo application from the APP menu. See page 311.

Set Go-NoGo Conditions

Select the Go-NoGo conditions (NG When) and actions when a Go-NoGo condition has been met (Violating).
1. Press NG When from the bottom menu and select the NoGo When conditions:
\begin{tabular}{c|l}
\hline Enter & \begin{tabular}{l} 
Enter: Sets the NoGo condition to \\
when the input signal stays within \\
the limit boundary.
\end{tabular} \\
\hline Exit & \begin{tabular}{l} 
Exit: Sets the NoGo condition to \\
when the input signal exceeds the \\
limit boundary.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & 2. Press Go Back to return to the previous menu. & Go Back \\
\hline \multirow[t]{4}{*}{Set Go-NoGo Actions} & 3. Press Violating to set what action to perform when a signal violates the Go-NoGo conditions. & Violating \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l|l} 
Stop & \(\begin{array}{l}\text { The waveform stops when the } \\
\text { conditions are violated. }\end{array}\)
\end{tabular}} \\
\hline & Continue \begin{tabular}{l} 
Ignore violations and \\
monitor the signal. Each \\
is counted.
\end{tabular} & tinue to violation \\
\hline & 4. Press Go Back to return to the previous menu. & Go Back \\
\hline \multirow[t]{4}{*}{Set Go-NoGo Source} & Press Compare Source from the bottom menu to set the Go-NoGo boundary source. & Compare Source \\
\hline & CH1 Sets CH1 as the source & \\
\hline & \begin{tabular}{ll} 
CH2 & \begin{tabular}{l} 
Sets CH2 as the source \\
up to four channels.
\end{tabular}
\end{tabular} & here are \\
\hline & 6. Press Go Back to return to the previous menu. & Go Back \\
\hline Set Boundary Tolerance & 7. To set the Go-NoGo boundary tolerance, press Reference Mode. & Reference Mode \\
\hline Auto Tolerance & 8. To set the boundary tolerance as a percentage offset from the source waveform, press Auto Tolerance and use the VARIABLE knob. & Auto Tolerance VARIABLE \\
\hline
\end{tabular}

Offset \(\quad 0.4 \% \sim 40 \%(.4 \%\) steps)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Maximum and Minimum Position} & \multicolumn{2}{|l|}{9. To manually set the template tolerance, press Minimum Position or Maximum Position and use the VARIABLE knob to set the absolute minimum or maximum position.} & \begin{tabular}{l}
Minimum Position \\
Maximum Position
\end{tabular} \\
\hline & Range & Voltage division range & \\
\hline Save Boundary Template & 10. Press tolera & Operation to save the oundaries. &  \\
\hline
\end{tabular}
11. The Maximum Position tolerance will be saved to reference waveform R1, and the Minimum Position tolerance to R2.
12. Press Go Back to return to the previous menu.

Go Back

Start Go-NoGo Press Enable to start the Go-NoGo test. Then the Enable button will change to Disable. Pressing Disable will stop the Go-NoGo test and toggle the button back to Enable.

If the Violating setting was set to Stop, press Enable to restart the test after it has stopped.


Results When Go-NoGo is running, the violation/test
ratio is displayed in the bottom left-hand corner.
The first digit represents the number of violations,
and the right hand digit represents the number of
tests.


Exit the Application

To exit the application, press Break.

After you exit the Go/NoGo app, the boundary templates that were saved to R1 \& R2 reference waveforms will still be turned on. See page 362 to turn the reference waveforms off.

Using the Go-
To output the Go-NoGo results to an Go/No Go
NoGo Output external device, the Go-NoGo rear panel terminal (open collector) can be used. The Go-NoGo terminal will output a positive pulse each time a NoGo violation has occurred for a minimum of 500us. The voltage of the pulse depends on the external pull-up voltage.

\section*{Timing Diagram}



\section*{DVM application}

The DVM app is a digital voltage meter or digital current meter readout that floats on the top lefthand side of the screen. However, please note that if the cursors (refer to page 59) are turned on, the DVM readout will be replaced by the cursor readout.

The DVM app allows you to measure the AC RMS, DC, DC RMS, Duty and frequency of an input signal. This software is especially useful for those measurement applications that require both a DSO and a basic DVM to be used at the same time.

\section*{Basic Features:}
- 300V input (peak AC + DC) CAT 1
- 3 digit resolution for voltage measurements
- 5 digit resolution for frequency
- Input channel selection

\begin{tabular}{|c|c|c|}
\hline Panel Operation & Choose the DVM application from the APP menu. See page 311. & \begin{tabular}{l}
 \\
DVM
\end{tabular} \\
\hline \multirow[t]{2}{*}{Set Source} & 1. Press Source and select the source channel for the DVM. The probe type setting (voltage or current) determines whether the function acts as a digital voltmeter or as a digital current meter for the selected source. See page 110 to set the probe type. & Source CH1 \\
\hline & Source \(\quad \mathrm{CH} 1 \sim \mathrm{CH} 4\) & \\
\hline \multirow[t]{3}{*}{Mode} & \multicolumn{2}{|l|}{The Mode setting determines the measurement mode for the meter.} \\
\hline & 2. Press Mode and select the mode. & \begin{tabular}{l}
Mode \\
DC]
\end{tabular} \\
\hline & \multicolumn{2}{|l|}{Mode AC RMS, DC, DC RMS, Duty, Frequency} \\
\hline Turn On/Off & 3. Press \(D V M\) and toggle DVM on. The DVM app will remain running in the background even if other functions are turned on. & \[
\begin{gathered}
\text { DVM } \\
\text { On }
\end{gathered}
\] \\
\hline
\end{tabular}

\section*{Data Log application}

The Data Log app will log the current waveform data or screenshot at set intervals for a set duration of time.

Basic Features:
- Log up to 1000 hours of images or waveform data.
- The minimum interval is 2 , or 5 seconds, and the Interval time needs to be lengthened because of the longer memory length. If you use the USB flash drive to store data, it may require a longer interval which depends on the storing data speed of the USB flash drive.


Panel Operation Choose the Data Log application from the APP menu. See page 311.


DataLog
1. Press Setup.
2. Press Log to from the side menu and select what type of data to

Log to
Waveform log, waveform data or screenshots.
Log to Image, Waveform
3. Press Source from the side menu and select a source channel to \(\log\) if waveforms are to be logged.
\[
\text { Source } \quad \mathrm{CH} 1 \sim \mathrm{CH} 4 \text {, All Displayed }
\]
4. Press Interval and set the logging interval time.

Interval
23:59:59.500s

Interval Data: 2sec ~ 23h59m59.5s
Image: \(5 \mathrm{sec} \sim 23 \mathrm{~h} 59 \mathrm{~m} 59.5 \mathrm{~s}\)
5. Press Duration and select the logging duration time.

Duration 999:04:59.5885

Duration \(5 \mathrm{sec} \sim 999 \mathrm{~h} 59 \mathrm{~m} 59.5 \mathrm{~s}\)
6. From the bottom menu, press File FORMAT and set the save file format. See the Save/ Recall chapter (page 364) for details.

Turn On/Off
7. Press Data Logging from the

Data Logging On bottom menu and toggle Data Logging on.

The data/images will be saved to the designated file path when Data Logging is turned on.

\section*{Digital Filter application}

Background The Digital Filter app is a digital high, low, band pass filter with a selectable cutoff frequency. The digital filter can be applied to analog channel individually or together using the tracking functionality.

Basic Features:
- High, low, band pass filtering of analog channels.
- Selectable cutoff frequencies.
- Tracking function

Example


Digital filter
type or status
CH 1 input: 2 Vpp 1 kHz square wave, low pass filter with 1 kHz cutoff frequency.

CH 2 input: 2Vpp 1 kHz square wave, high pass filter with 1 kHz cutoff frequency.
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{7}{*}{Set Source} & 1. Select a source channel by pressing Ch1 Filter, Ch2 Filter and for 4-channel model, Ch3 Filter, Ch4 Filter. & \begin{tabular}{l}
Ch1 Filter \\
On
\end{tabular} \\
\hline & 2. From the side menu press Filtering and turn on. & \begin{tabular}{l}
Filtering \\
On Off
\end{tabular} \\
\hline & 3. Press Filter Type and select low, high, or band pass filter. & Filter Type High Pass, \\
\hline & \multicolumn{2}{|l|}{Type Low Pass, High Pass, Band Pass} \\
\hline & \multicolumn{2}{|l|}{4. If Low Pass was selected, press Upper Limit to set the low pass cutoff frequency. Likewise if High Pass was selected, press Lower Limit to set the high pass cutoff frequency. Only one option will be available at a time.} \\
\hline & \multicolumn{2}{|l|}{Upper Limit \(1 \mathrm{~Hz} \sim 0.495 \mathrm{x}\) sampling frequency} \\
\hline & \multicolumn{2}{|l|}{Lower Limit \(1 \mathrm{~Hz} \sim 0.495 \mathrm{x}\) sampling frequency} \\
\hline Tracking & 5. Press Tracking if you want the settings of the digital filter on each channel to be the same. When a setting is changed on one channel, it is reflected on the other channels. & Tracking On Off \\
\hline Note & The digital filter settings will still apply to input signals after leaving the app, unless & the relevant turned off. \\
\hline
\end{tabular}

\section*{Mask application}

Background The Mask application allows the user to create shape templates for easy comparison of an input signal with a defined shape.

Panel Operation Choose the Mask application from the APP menu. See page 311.


Mask
Select the source channel

Step
1. Press the Compare Source button
from the bottom menu.

Source
2. Press the CH 1 button from the side menu and use the VARIABLE knob to select a source channel (CH1, CH2 for 2 channels models; CH 3 CH 4 for 4 channels models) VARIABLE as a compare source.


\section*{Configure the mask violation}

Step
1. Press the Set up test button from the bottom menu.

Set Up
Test
2. Press Violating Threshold to set the number of violations that can occur

Violation
Threshold 1 before a test status is considered.

3. Press Stop After Time to set the test to stop after a set amount of time elapses.
Range \(\quad 1 \sim 172,800 \mathrm{~s}\) (infinite)
4. Press stop After Waveform to set the test to stop after a set
 number of waveforms.

Range 1~1,000,000 (infinite)
5. Press Select Action to set how the oscilloscope responds to test failure. User can set multiple actions as shown in the figure below.
\begin{tabular}{|c|c|c|}
\hline Stop Rcquisition & n/a & Select \\
\hline Save Screen Image & n/a & Action \\
\hline Save Waveform to File & п/a & Stop Hcq \\
\hline Hardcopy & n/a & \\
\hline Go/NoGo Out & & \\
\hline
\end{tabular}
6. Press Action on Failure On/Off. The above setting will be executed only

Action on Failure On Off when Failure On or Off occurs.
7. Press Action on Test Completion On/Off. (0n) Off
8. Press" \(\mathrm{Go} / \mathrm{NoGo}\) Out" option to set how the oscilloscope will
 respond to test completion.
9. Press Pre-Test Delay to set a delay before starting a test.

Pre-Test Delay 0.0
10. Press Repeat on Completion (On/Off)to set on for the test to repeat when it has run the minimum number of waveforms or the minimum amount of time

Set off for the test to run a single time and not repeat.

Auto Mask

Step
1. Press the Auto Mask button from the bottom menu to create a mask

Auto Mask shaped out from an existing waveform.
2. Press the Reference Source button from the side menu to select the pattern the mask will be shaped on.
3. Use the VARIABLE knob to select the reference source (CH1 or CH2 for 2 channels model; CH 3 or CH 4 for 4 channels model).

4. Press the Edit button from the side menu if you want to further adjust the mask pattern. Otherwise, go to
 step 9 below to create the mask directly without adjustment.
5. Press the Unit button from the side menu and use the VARIABLE knob to select either Divisions (graticule division fractions) or Current ( X or Y axis actual scale units) as the units to set the mask deviation from its original pattern.
6. Press the \(X\) Mask button from the side menu and use the VARIABLE knob to adjust the horizontal deviation of the mask compared to its original pattern.

7. Press the \(Y\) Mask button from the side menu and use the VARIABLE knob to adjust the vertical deviation of the mask compared to its original pattern.

8. Press the Go Back button from the side menu.

9. Press the Create Mask button from the side menu.
A mask is created (as shown in the below diagram) and can now be used.

10. Press the Auto Mask button from the bottom menu to close auto mask function.
11. Press the Mask ON button from the bottom menu to execute the mask function and start comparing the source channel (set in the compare source menu) with the mask.


\section*{User Defined Mask/ Create Mask}

Background A user-defined mask can be created. Up to 8 areas of any form, each made of up to 10 points, can be built out and juxtaposed to each other to form the user-defined mask pattern.

Step 1. Press the User Define button from the bottom menu.

2. Press the Edit button from the side menu.
3. Press the Area Number button from the side menu and use the VARIABLE knob to select 1 out of 8 areas that can be created to build the mask pattern and start to shape it.

4. Press the Unit button from the side menu and use the VARIABLE knob to either select Divisions (graticule division fractions) or Current (Actual oscilloscope X- and Y-axis scale units) as the points position units.
5. Press the Edit Points button from the side menu to start shaping the pattern of the area you selected.

Edit the first point 6. Press the Points Number button from the side menu and use the VARIABLE knob to select the first point that will shape the area pattern. Up to 10 points can form an area pattern.
7. Press the Points Number ON button from the side menu to activate the point.
8. Press the \(Y\) Mask button from the side menu and use the VARIABLE knob to adjust the vertical position of the point (Y-axis).
9. Press the \(X\) Mask button from the side menu and use the VARIABLE knob to adjust the horizontal position of the point (X-axis).


Edit the other points
10. Repeat the above steps 6 to 9 to add other points to the area and until you finalize the shape of this first area. Then press the Go Back button to exit the Edit Points menu.

Create other areas 11. Repeat the above steps for as many areas as you need to create your mask pattern.
12. Press the Go Back button again from the side menu.
13. Press the Create Mask button from the side menu.

Create
Mask A user-defined mask is created (as shown in the below diagram) and can now be used.


Save the userdefined mask
14. Press the Save button from the side menu.

15. Use the VARIABLE knob and the select key to change the name of the file if needed and press the Save Now button from the side menu to save the user-defined mask.

Load a userdefined mask
16. From the User Define menu, you can also load an existing mask. Press the Load button from the side menu, use the VARIABLE knob to select the file, and press the Select key twice to load the mask.


VARIABLE


\section*{User-defined Mask File Format}
\begin{tabular}{ll} 
Background & \begin{tabular}{l} 
The user-defined mask files can be created out of \\
support (from an external computer for example) \\
and uploaded to the GDS-3000A Mask application \\
with a USB flash disk.
\end{tabular} \\
& \begin{tabular}{l} 
Create an unformatted text file respecting the \\
format described below.
\end{tabular} \\
\hline File extension & File_name.MSK \\
\hline Format & \begin{tabular}{l} 
Format (XX: version number) \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
Aretal Area Number,1, \\
Points Number,1,, \\
\(0.00,2.00\), \\
\(1.00,1.00\), \\
\(-1.00,1.00\),
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{ll}
\begin{tabular}{ll} 
Example \\
(with Division
\end{tabular} & \begin{tabular}{l} 
Format (XX: version number) \\
units)
\end{tabular} \\
& Total Area Number,2, \\
& Area Number,1, \\
& Points Number,4, \\
& \(0.00,2.00\) \\
& \(1.00,1.00\) \\
& \(0.00,0.00\) \\
& \(-1.00,1.00\) \\
& Area Number,2, \\
& Points Number,3, \\
& \(0.00,-2.00\), \\
& \(1.00,-1.00\) \\
& \(-1.00,-1.00\)
\end{tabular}

\section*{FRA application}

Background The Frequency Response Analyzer (FRA) is a feature application for digital storage oscilloscope with an integrated arbitrary waveform generator. It can plot gain and phase responses at the output of a device-under-test (DUT) when its input is excited by a frequency-swept sinusoidal signal. Bode plots can be created, stored for future reference and analyzed. The FRA application uses the output of the Arbitrary Wave Generator (AWG) to generate the frequency-swept signal.

Functions
- Bode plots.
- Stores plots for future use and analysis.
- Precise analysis of the measured data in a plot with the aid of cursor measurement.
- Amplitude profile implemented along with independent interpolation control for all test frequency bands.

\begin{tabular}{ll} 
Introduction & \begin{tabular}{l} 
The FRA application is divided into two main \\
operation modes: Setting and Analysis mode.
\end{tabular} \\
\begin{tabular}{l} 
When in Setting mode (the Run menu icon \\
appeared), the user can setup the FRA analysis \\
and then start it right after the FRA Run button is \\
pressed.
\end{tabular} \\
\hline
\end{tabular}
Time domain \(\quad\)\begin{tabular}{l} 
When the FRA application is in Setting mode, the \\
top portion of the display window shows time- \\
domain waveforms of the input and the output \\
channel. This window disappears when in
\end{tabular}
Analysis mode.

Main display In either mode, the FRA main display shows a Bode plot with corresponding abscissa and ordinates scales.

\section*{Connections}

Background The FRA application uses two analog channels of the DSO as well as the GEN1 output of the Arbitrary Wave Generator (AWG).

Connection 1. Connect the AWG output GEN1 to the input of the Device-Under-Test (DUT).
2. Connect one DSO analog channel to the input of the DUT.
3. Connect the output of the DUT to another DSO analog channel.



Launching the FRA application

Background The FRA application is launched from the APP menu.

Panel Operation 1. Press the APP key.
2. Press the \(A P P\) button from the bottom menu.
3. Scroll through the applications using the VARIABLE knob until the FRA application is highlighted.
4. Launch the FRA application by pressing the Select key twice.


Select

\(\times 2\)

\section*{Setting mode}

In Setting mode(FRA Run button appeared), the user can define the sources and setup the frequency-swept sinusoidal signal generated by the AWG. In addition, FRA data acquisition is launched from this mode.

FRA Run

Background Once the FRA application is fully setup and the DUT is correctly connected, data can be acquired by pressing the Run button.


Note
Please be aware that the total time required for measuring the frequency response may vary according to your setup, e.g. the number of points per decade or when sweeping at lower frequencies.

Please note that the FRA application only allows a DSO record length of 10,000 points.
1. In Setting mode (FRA Run button appeared), press the FRA Run button to start the frequency response analysis.
2. The data acquisition will stop
automatically when the stop frequency is reached. The © button is then toggled back to STOP and the data is ready for analysis.

If the user needs to cancel an ongoing FRA measurement, the
- button can be pressed.
3. Using the second Analyze menu button will switch to the Analysis mode. Details regarding this mode will be explained in later sections.
4. Press the icon to return to the upper-level menu.

\section*{Source}

Please refer to section "Source" on page 273.
Setup amplitude profile
Please refer to paragraph "Setup amplitude profile" on page 273.
Setup AWG
Please refer to paragraph "Setup AWG" on page 275.
Quit
Please refer to paragraph "Quit" on page 277.
Analysis mode
Please refer to section "Analysis mode" on page 277.
Measure
Please refer to paragraph "Measure" on page 277.

\section*{Bode Plot}

Please refer to paragraph "Bode Plot" on page 278.
Overlay
Please refer to paragraph "Overlay" on page 280.
File Utilities
Please refer to paragraph "File Utilities" on page 281.

\section*{AVE/RECALL}
File Format/Utility ..... 341
Image File Format ..... 341
Waveform File Format ..... 341
Spreadsheet File Format ..... 342
Setup File Format ..... 344
Create/Edit Labels ..... 347
Save ..... 350
File Type/Source/Destination ..... 350
Save Image ..... 351
Save Waveform ..... 353
Save Setup ..... 355
Recall ..... 357
File Type/Source/Destination ..... 357
Recall Default Panel Setting ..... 357
Recall Waveform ..... 359
Recall Setup ..... 360
Reference Waveforms ..... 362
Recall and Display Reference Waveforms ..... 362

\section*{File Format/Utility}

\section*{Image File Format}
\begin{tabular}{ll}
\hline Format & *.bmp or *.png \\
\hline Default Filename & DSxxxx.bmp/png \\
\hline Contents & \begin{tabular}{l} 
The display image is 800 by 480 pixels. The \\
background color can be inverted (Ink saver \\
function). Each image file is saved to the current \\
file path as a bitmap or PNG file.
\end{tabular}
\end{tabular}

\section*{Waveform File Format}
\begin{tabular}{lll}
\hline Format & \begin{tabular}{l} 
DSxxxx.lsf, CH1~CH2.lsf \\
The LSF file format efficiently stores waveforms. \\
This is the file format used for storing and \\
recalling all waveforms that are used with the \\
GDS-3000A series.
\end{tabular} \\
\hline Wilename & DSxxxx.lsf
\end{tabular}
frequency information. Ref \(1 \sim 4\) are useful for reference purposes. Other waveforms (LSF and W1~20) must be recalled to R1~4 before being displayed.

Contents:
Waveform Data

The waveform data can be used for detailed analysis. It consists of the horizontal and vertical data used by the waveform.

\section*{Spreadsheet File Format}

Format *.csv (Comma-separated values format, can be opened in spreadsheet applications such as Microsoft Excel).
CSV-formatted files can be stored in either a shortmemory format or a long-memory format: Detail CSV, Fast CSV. The number of points that are saved depends on the record length settings.

Detail CSV will record both the horizontal and vertical sample points of the waveform. All the points are recorded in scientific notation for analog data.
Fast CSV will only record the vertical amplitude of the sample points. Fast CSV also contains data that enables the horizontal data points to be reconstructed, such as trigger position, etc. Data is recorded as integers.
Note, however, that only fast CSV can be recalled to the internal memory. Detailed CSV cannot be recalled.
\begin{tabular}{lll}
\hline Filename & DSxxxx.csv & \\
\hline Waveform Type & CH1 ~4 & Input channel signal \\
& Ref1~4 & Reference waveform \\
& Math & Math operation result (page 66) \\
& All Displayed All the waveforms on the display. \\
\hline
\end{tabular}
\(\begin{array}{ll}\text { Contents: } & \text { The following information is included in the Fast } \\ \text { Fast CSV } & \text { CSV waveform files, where applicable. }\end{array}\)
- Format (scope type)
- Input distance (input trigger distance)
- Trigger level
- Vertical units
- Vertical units extend div
- Probe type
- Vertical scale
- Horizontal units
- Horizontal position
- Sinc ET mode (sampling mode)
- Horizontal old scale
- Firmware
- Mode
- Memory length
- Trigger address
- Source
- Vertical units div
- Label
- Probe ratio
- Vertical position
- Horizontal scale
- Horizontal mode
- Sampling period
- Horizontal old position
- Time
- Raw vertical waveform data

Contents:
Detail CSV

Detail CSV waveform data contains channel information such as vertical and horizontal position of a signal for all the recorded points.
The following information is included in Detail CSV, where applicable:
- Format (scope type)
- Memory length
- Input distance
- Trigger address (input trigger distance)
- Trigger level
- Source
- Vertical units
- Vertical units div
- Vertical units extend div
- Probe type
- Vertical scale
- Horizontal units
- Horizontal position
- Sinc ET mode (sampling mode)
- Horizontal old scale
- Firmware
- Mode
- Horizontal data
- Label
- Probe ratio
- Vertical position
- Horizontal scale
- Horizontal mode
- Sampling period
- Horizontal old position
- Time
- Raw vertical waveform data
- Vertical data

\section*{Setup File Format}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Format} & \multicolumn{3}{|l|}{DSxxxx.set (proprietary format)} \\
\hline & \multicolumn{3}{|l|}{The setup file saves or recalls the following settings.} \\
\hline Contents & Acquire & \begin{tabular}{l}
- Mode \\
- Sample rate \\
- XY
\end{tabular} & \begin{tabular}{l}
- Sample mode \\
- Record Length
\end{tabular} \\
\hline & Display & \begin{tabular}{l}
- Mode \\
- Persistence \\
- Waveform intensity \\
- Graticule intensity
\end{tabular} & \begin{tabular}{l}
- Backlight intensity \\
- Graticule \\
- Backlight \\
- Auto-dim
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Channel & \begin{tabular}{l}
- Scale \\
- Channel \\
- Coupling \\
- Impedance \\
- Invert \\
- Bandwidth
\end{tabular} & \begin{tabular}{l}
- Expand \\
- Position \\
- Probe \\
- Probe attenuation \\
- Deskew
\end{tabular} \\
\hline Cursor & \begin{tabular}{l}
- Horizontal cursor \\
- H Unit
\end{tabular} & \begin{tabular}{l}
- Vertical cursor \\
- V Unit
\end{tabular} \\
\hline Measure & \begin{tabular}{l}
- Source \\
- Gating \\
- Statistics
\end{tabular} & \begin{tabular}{l}
- Display \\
- High-Low \\
- Reference levels
\end{tabular} \\
\hline Horizonta & - Scale & \\
\hline Math & \begin{tabular}{l}
- Source1 \\
- Operator \\
- Source2
\end{tabular} & \begin{tabular}{l}
- Position \\
- Unit/Div \\
- Math Off
\end{tabular} \\
\hline FFT Math & \begin{tabular}{l}
- Source \\
- Vertical Units \\
- Window
\end{tabular} & \begin{tabular}{l}
- Vertical position \\
- Horizontal position
\end{tabular} \\
\hline Advanced Math & \begin{tabular}{l}
- Expression \\
- VAR1 \\
- VAR2
\end{tabular} & \begin{tabular}{l}
- Position \\
- Unit/Div
\end{tabular} \\
\hline Trigger & \begin{tabular}{l}
- Type \\
- Source \\
- Coupling \\
- Alternate \\
- Rejection \\
- Noise Rejection
\end{tabular} & \begin{tabular}{l}
- Slope \\
- Level \\
- Mode \\
- Trigger When \\
- Timer \\
- Holdoff
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{lll} 
Utility & - Language & - Ink Saver \\
& - Hardcopy key & - Assign Save \\
& - File Format & - Probe Comp. \\
\hline \begin{tabular}{l} 
Save/ \\
recall
\end{tabular} & - Image file & - \\
format
\end{tabular}

\section*{Create/Edit Labels}

Overview
Reference files, Setup files and the analog and digital input channels can have individual file labels set.

For the analog channels and reference waveforms, the file label can be displayed next to the channel/reference indicator.

The file labels are also used to easily identify reference files, setup files or channels when saving or recalling waveforms and setups.

Example


In the example above, the file label for channel 1 is displayed next to the channel indicator and is also displayed in the Edit Label menu. The Ref_1 file label is shown next to the reference indicator.

Panel Operation 1. Press the Save/Recall key from the front panel.

Save/Recall

2. Press Edit File Label from the bottom menu.
3. Press Label For and select the item that you want to create the label for.

Label For CH1~CH4, Ref1~4, Set1~20, Math
4. To choose a preset label, Press

User Preset from the side menu and choose a label.
\begin{tabular}{ll} 
Labels & ACK, AD0, ANALOG, BIT, CAS, \\
& CLK, CLOCK, CLR, COUNT, \\
& DATA, DTACK, ENABLE, HALT, \\
& INT, IN, IRQ, LATCH, LOAD, \\
& NMI
\end{tabular}

Edit Label
5. Press Edit Character to edit the current label.

Edit
6. The Edit Label window appears.

7. Use the VARIABLE knob to highlight a character.


Press Enter Character to select a number or letter.
\begin{tabular}{|c|c|c|}
\hline & Press Back Space to delete a character. & Backspace \\
\hline & Press Save Now to save the label and return to the previous menu. & Sove Nou \\
\hline & To cancel the editing the label and return to the previous menu, press Cancel. & Cancel \\
\hline Display Label & To display the currently selected file label on the screen next to its respective indicator, toggle Label Display to On. & Label Display On off \\
\hline & Conversely, if you want to remove the currently selected file label from the display, toggle Label Display to Off. & \\
\hline
\end{tabular}

\section*{Save}

\section*{File Type/Source/Destination}
\begin{tabular}{|c|c|c|}
\hline Item & Source & Destination \\
\hline Panel Setup (DSxxxx.set) & - Front panel settings & \begin{tabular}{l}
- Internal memory: Set1 ~ Set20 \\
- File system: Disk, USB
\end{tabular} \\
\hline \begin{tabular}{l}
Waveform Data \\
(DSxxxx.csv) \\
(DSxxxx.Isf) \\
(CH1~CH2.Isf, \\
Ref1~Ref4.Isf, \\
Math.Isf)* \\
ALLxxxx.csv
\end{tabular} & \begin{tabular}{l}
- Channel \(1 \sim 4\) \\
- Math operation result \\
- Reference waveform Ref1~4 \\
- All displayed waveforms
\end{tabular} & \begin{tabular}{l}
- Internal memory: Reference waveform Ref1~4, Wave1~ Wave20 \\
- File system: Disk, USB
\end{tabular} \\
\hline
\end{tabular}
Display Image
\((\mathrm{DSxxxx} . \mathrm{bmp} / \mathrm{png})\)
\((\) Axxx1.bmp/png)**
* Stored in ALLXXXX directories when All Displayed waveforms are saved.
** Stored in ALLXXXX directories when the Hardcopy key is assigned to save Waveform, Setup or All.

By default all filenames/directories are named DSxxxx/ALLxxxx where \(x x x x\) is a number starting from 0001 and is incremented by one after each save.

\section*{Save Image}

Images can be saved either using the Save/Recall key or by using the Hardcopy key. To save images using the Hardcopy key, see the hardcopy section on page 372.
1. To save to USB, connect a USB drive to the front panel USB port. If a USB drive is not connected, images can still be saved to the internal memory.
2. Press the Save/Recall key from the front panel.
3. Press Save Image from the bottom menu.
4. Press File Format to choose PNG or BMP file types.

File Format

Range DSxxxx.bmp, DSxxxx.png
5. Press Ink Saver to toggle Ink Saver On or Off.

Ink Saver On Off

Ink Saver On


Ink Saver Off

6. Press Save from the side menu to save the display as an image file.

7. You will automatically be taken to a file utility where you will be able to edit the name of the file.
8. To edit the file name, use the VARIABLE knob to highlight a character.


Press Enter Character or the Select key to select a number or letter.


Pressing Cancel will cancel the save operation and return you to the Save/Recall menu.
9. Press Save Now to save the file. The file name need not have been edited to save the file.
Press Back Space to delete a character.

After Save Now has been pressed the file will be saved.

Image saved to Disk:/DS0024. PNG.

\(!\) Note
The file will not be saved if the power is turned off or the USB drive is taken out before the message ends.

File Utility
To edit the internal memory or the USB flash drive contents (create/ delete/rename files and folders) or to edit the default file path, press File
Utilities from the side menu.

\section*{Save Waveform}
Panel Operation \begin{tabular}{l} 
1. To save to an external USB flash \\
drive, connect the drive to the \\
front panel USB port. If a USB \\
drive is not connected, files can \\
still be saved to the internal \\
memory. \\
2. Press the Save/Recall key from the \\
front panel. \\
3. Press Save Waveform from the \\
bottom menu. \\
4. Choose the From waveform on the \\
side menu.
\end{tabular}\(\quad\)\begin{tabular}{l} 
From \\
(Channel_1)
\end{tabular}

Source CH1~4, Math, Ref1~4, All Displayed
5. Press To (internal memory) or To File and choose a destination to save.

\begin{tabular}{ll} 
To & Ref1~4, Wave1~20 \\
\hline To File & Format: LSF, Detail CSV, Fast CSV
\end{tabular}
6. Press Save to save the file.

Save
7. If you are saving to a file, a file utility appears where you will be able to edit the name of the file from the default "DSXXX" filename.
8. To edit the filename, use the VARIABLE knob to highlight a character.


Press Enter Character or the Select
key to select a number or letter.

Enter
Character
Press Back Space to delete a character. The filename need not have been edited to save the file.

Pressing Cancel will cancel the save operation and return you to the Save/Recall menu.

After Save Now has been pressed the file will be saved.

Waveform saved to Disk:/DS0002.CSV.

\(!\) Note
The file will not be saved if the power is turned off or the USB drive is taken out before the message ends.

File Utility

To edit the internal memory or the USB flash drive contents (create/

File
Utilities delete/rename files and folders), press File Utilities.

\section*{Save Setup}

\section*{Panel Operation 1. To saving to an external USB flash Front Panel drive connect the drive to the front or rear panel USB port. If a USB drive is not connected, files can be saved to the internal memory. \\ }
2. Press the Save/Recall key from the

Save/Recall front panel.
3. Press Save Setup from the bottom menu.
4. Press To (internal memory) or To File and choose a destination to save to.

\begin{tabular}{ll} 
To & Set1~Set20 \\
\hline To File & DSxxxx.set \\
\hline
\end{tabular}
5. Press Save to confirm saving. When completed, a message appears at the bottom of the

Save display.
6. If you are saving to a file, a file utility appears where you will be able to edit the name of the file from the default "DSxxxx" filename.
7. To edit the filename, use the VARIABLE knob to highlight a character.


After Save Now has been pressed the file will be saved.
```

Waveform saved to Disk:/DS0002.CSV.

```

\(!\) Note
The file will not be saved if the power is turned off or the USB drive is taken out before the message ends.

File Utility
To edit the internal memory or the USB flash drive contents (create/
delete/ rename files and folders) or to set the file path, press File Utilities.
\begin{tabular}{ll|l} 
Edit Label & \begin{tabular}{l} 
To edit labels for Setup files, press \\
\\
\\
\\
Edit Label. For more details on editing
\end{tabular} & \begin{tabular}{c} 
Edit \\
Label
\end{tabular} \\
\hline
\end{tabular} labels, see page 347.

\section*{Recall}

\section*{File Type/Source/Destination}
\begin{tabular}{|c|c|c|}
\hline Item & Source & Destination \\
\hline Default Panel Setup & - Factory installed setting & - Current front panel \\
\hline \begin{tabular}{l}
Reference \\
Waveform
\end{tabular} & \begin{tabular}{l}
- Internal memory: \\
Ref1~4
\end{tabular} & - Current front panel \\
\hline Panel Setup (DSxxxx.set) & \begin{tabular}{l}
- Internal memory: S1~ S20 \\
- File system: Disk, USB
\end{tabular} & - Current front panel \\
\hline Waveform Data (DSxxxx.Isf, DSxxxx.csv**) (CH1~CH4.Isf, Ref1~Ref4.Isf, Math.Isf)* & \begin{tabular}{l}
- Internal memory: \\
Wave 1 ~ Wave20 \\
- File system: Disk, USB
\end{tabular} & - Reference waveform \(1 \sim 4\) \\
\hline \multicolumn{3}{|l|}{*Recalled from ALLXXX directories. Note that Allxxxx.csv cannot be recalled to the oscilloscope.} \\
\hline \multicolumn{3}{|l|}{**Detail CSV files cannot be recalled to the oscilloscope.} \\
\hline \multicolumn{3}{|l|}{Recall Default Panel Setting} \\
\hline
\end{tabular}

\footnotetext{
Panel Operation 1. Press the Default key.
}
2. The screen will update with the default panel settings.
\begin{tabular}{lll} 
Setting Contents & \begin{tabular}{l} 
The following is the default (factory) setting \\
contents.
\end{tabular} \\
\hline Acquire & Mode: Sample \(\quad\) XY: OFF
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & Record Length: 10k & Expand: By Center \\
\hline \multirow[t]{4}{*}{Display} & Mode: Vector & Persistence: 240 ms \\
\hline & Waveform intensity: 50\% & Graticule intensity: 50\% \\
\hline & Backlight Intensity: 80\% & Backlight Auto-dim: On \\
\hline & Time: 10min & Graticule: full \\
\hline \multirow[t]{6}{*}{Channel} & Scale: 100mV/Div & CH1: On \\
\hline & Coupling: DC & Impedance: \(1 \mathrm{M} \Omega\) \\
\hline & Invert: Off & Bandwidth: full \\
\hline & Expand: By Ground & Position: 0.00 V \\
\hline & Probe: Voltage & Probe attenuation: 1x \\
\hline & Deskew: 0s & \\
\hline Cursor & Horizontal cursor: Off & Vertical Cursor: Off \\
\hline \multirow[t]{5}{*}{Measure} & Source: CH1 & Gating: Screen \\
\hline & Display All: Off & High-Low: Auto \\
\hline & Statistics: Off & Mean \& Std Dev Samples: 2 \\
\hline & High Ref: 90.0\% & Mid Ref: 50.0\% \\
\hline & Low Ref: 10.0\% & \\
\hline Horizontal & Scale: 10us/Div & Position: 0.000 s \\
\hline \multirow[t]{3}{*}{Math} & Source1: CH1 & Operator: + \\
\hline & Source2: CH2 & Position: 0.00 Div \\
\hline & Unit/Div: 200 mV & Math Off \\
\hline \multirow[t]{3}{*}{FFT} & Source: CH1 & Vertical Units: dBV RMS \\
\hline & Window: Hanning & Vertical: 20dB \\
\hline & Horizontal:5MHz/div & \\
\hline \multirow[t]{2}{*}{Advanced Math} & Expression: \(\mathrm{CH} 1+\mathrm{CH} 2\) & VAR1: 0 \\
\hline & VAR2: 1 & Position: 0.00Div \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & \multicolumn{2}{|l|}{Unit/div: 500 mV} \\
\hline APP & \multicolumn{2}{|l|}{App: Go-NoGo, DVM, Datalog, Mount Remote Disk} \\
\hline \multirow[t]{5}{*}{Trigger} & Type: Edge & Source: CH1 \\
\hline & Coupling: DC & Alternate: Off \\
\hline & Noise Rejection: Off & Slope: Positive \\
\hline & Level: 0.00V & Mode: Auto \\
\hline & Holdoff: 10.0ns & \\
\hline \multirow[t]{3}{*}{Utility} & Hardcopy: Save & Ink Saver: Off \\
\hline & Assign Save To: Image & File Format: Bmp \\
\hline & Probe Comp.: 1 kHz & \\
\hline
\end{tabular}

Recall Waveform

Panel Operation 1. For recalling from an external USB Front Panel flash drive, connect the drive to the front or rear panel USB port.

2. The waveform must be stored in advance. See page 353 for waveform store details.
3. Press the Save/Recall key.

Save/Recall

4. Press Recall Waveform from the bottom menu. The Recall menu

Save Waveform appears.
5. Press From (internal memory) or From File and choose a source to recall from.


From Wave1~20
From File* File format: Lsf, Fast Csv
* Only files in the current file path will be available, this includes files saved in the ALLxxxx directories.
Allxxxx.csv files cannot be recalled to the oscilloscope.
Only the "Fast CSV", "LSF" files can be recalled to the oscilloscope.
6. Press To and select the reference waveform to recall to.
To Ref1~4
7. Press Recall Now to recall the waveform. The reference waveform will appear on the screen when successful.

File Utility
To edit USB flash drive contents
(create/ delete/ rename files and

File Utilities folders) or to set the file path, press File Utilities.

Recall Setup
Panel Operation
1. (For recalling from an external USB flash drive) Connect the drive to the front or rear panel USB port.
2. Press the Save/Recall key.
3. Press Recall Setup from the bottom menu.

Recall Setup
4. Press From (internal memory) or From File and choose a source to recall from.
From Set1~20

\section*{From File DSxxxx.set (USB, Disk)*}
* Only files in the current file path will be available.
5. Press Recall Now to confirm recalling. When completed, a message appears at the bottom of the display.

Setup recalled from Disk:/DS0002.SET.

The file will not be recalled if the power is turned off or the USB drive is taken out before the message appears.

File Utility

To edit the internal memory or the USB flash drive contents (create/

File
Utilities delete/ rename files and folders) or to set the file path, press File Utilities.

Edit Label To edit labels for Setup files, press Edit label. For more details on editing labels, see page 347 .

\section*{Reference Waveforms}

Recall and Display Reference Waveforms

Panel Operation A reference waveform must be stored in advance. See page 353 to store waveforms as reference waveforms.
1. Press the REF key on the front panel.

2. Pressing R1~R4 repeatedly will toggle the corresponding reference waveform OFF/ON.

Turning R1~R4 ON will open the corresponding reference menu.

3. If a reference waveform is ON but not active, its reference menu can be opened by pressing the corresponding R1~R4 key from the bottom menu.

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Vertical \\
Navigation
\end{tabular} & Press Vertical repeatedly from the side menu to choose to edit the vertical position or Unit/Div. Use the VARIABLE knob to edit the values. &  \\
\hline Horizontal Navigation & Press Horizontal repeatedly from the side menu to choose to edit the Time/Div or the horizontal position. Use the VARIABLE knob to edit the value. &  \\
\hline \multirow[t]{3}{*}{View Reference Waveform Details} & Pressing Ref Details will display the reference waveform details. & \[
\begin{gathered}
\text { Ref } \\
\text { Details }
\end{gathered}
\] \\
\hline & \multicolumn{2}{|l|}{Details Sample Rate, Record Length, Date} \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
Ref Details \\
Sample Rate: 5gemsps Record Length: 10000 points Date: 14-Apr-21 15:06:07
\end{tabular}} \\
\hline Edit Labels & To edit labels for Setup files, press Edit Labels. For more details on editing labels, see page 347. & Edit Label \\
\hline Save Reference Waveforms & To save reference waveforms, press Save to File. For more details on saving waveforms, see page 353 . & \begin{tabular}{l}
Save \\
To File
\end{tabular} \\
\hline
\end{tabular}

\section*{File utilities}

The file utilities are used each time files need to be saved to internal or external memory. The file utilities can create, delete and rename directories or files as well as copy files from internal memory to USB. The File Utilities menu also sets the file path for saving and recalling files from the Save/Recall menu.
File Navigation ..... 365
Create Folder ..... 366
Rename File ..... 367
Delete File or Folder ..... 369
Copy File to USB ..... 370

\section*{File Navigation}

The File Utilities menu can be used to choose files or to set the file path for saving/recalling files.

File System
File path
Drive space


File cursor
File attributes
Panel Operation 1. Press the Save/Recall key.
2. Press File Utilities from the bottom menu.

\section*{File}

Utilities
3. The file system appears.

4. Use the VARIABLE knob to move the file cursor up and down.

Use the Select key to choose a file or directory or to set the file path.


When a USB flash drive is used, the file path is remembered each time the USB flash drive is used. This saves you the hassle of setting the USB file path each time the USB flash drive is inserted into the scope.

\section*{Create Folder}
2. Press File Utilities from the bottom menu.

File
Utilities
3. Use the VARIABLE knob and Select key to navigate the file system. The preview thumbnail will be shown in the lower-right corner if the data selected by user refers to image.

VARIABLE



Create Folder
4. Press Create Folder to make a new directory at the selected location.
5. Use the VARIABLE knob to highlight a character.


Press Enter Character or the Select
key to select a number or letter.

Enter
Character
Press Back Space to delete a character.
6. Press Save Now to create the folder.

Cancel Press Cancel to cancel the operation.

Rename File

Panel Operation 1. Press the Save/Recall key.
2. Press File Utilities from the bottom menu.

File Utilities
3. Use the VARIABLE knob and VARIABLE Select key to choose a file to rename.

4. Press Rename when a file is chosen.

Rename

VARIABLE



Press Enter Character or the Select
key to select a number or letter. character.
6. Press Save Now to rename the folder or file.


\section*{Delete File or Folder}

\author{
Panel Operation 1. Press the Save/Recall key.
}
2. Press File Utilities from the bottom menu.

File Utilities
3. Use the VARIABLE knob and Select key to navigate the file system to choose a file.

4. Press Delete to delete the selected file.
5. Press Delete again to confirm the deletion.

\section*{Copy File to USB}

Panel Operation 1. Connect a USB drive to the front Front Panel panel USB port.

2. Press the Save/Recall key.
3. Press File Utilities from the bottom menu.
4. Use the VARIABLE knob and

VARIABLE Select key to navigate the file system to choose a file from internal memory.

5. Press Copy to USB to copy the selected file to the USB drive.

If the same file name already exists on the USB drive, it will be copied over.

\section*{\(H_{\text {ardcopy key }}\)}

The Hardcopy key is used as quick-save. The Hardcopy key can be used to save a screen shot, a waveform, or the current setup.

\section*{Save - Hardcopy Key}

\author{
Background \\ Panel Operation
}

When the Hardcopy key is assigned to "Save", pressing the Hardcopy key can be used to save a screen shot, a waveform, or the current setup, depending on the configuration.
1. If you wish to save to USB, connect a USB drive to the front panel USB port, otherwise the file will save to internal memory.

Front Panel

\section*{-}


Save/Recall


Hardcopy

Assign Save to [Image] when the Hardcopy key is pressed.

File Type: Image, Waveform, Setup, All
4. Press the Hardcopy key to save the Hardcopy file*.

A message will appear when the
 save is successful.
```

Image saved to Disk:/DS0025. PNG.

```

Image File Format

Ink Saver
5. For image files the file format can be selected with the File Format key.

File Format
Png
Format BMP, PNG
6. To have a white background for image files, set Ink Saver to On.
\[
\begin{gathered}
\text { Ink Saver } \\
\text { On Off }
\end{gathered}
\]

*Each time the Hardcopy key is used to save waveforms or setup files, the files are saved into a new directory. The save directory is labeled ALLXXXX, where XXXX is a number that is incremented with each save. This directory is created in either the internal memory or to a USB flash drive.

\section*{Remote control}

\section*{CONFIG}

> This chapter describes basic configuration for remote control. For a complete command list, refer to the programming manual downloadable from GW Instek website, www.gwinstek.com.
Interface Configuration ..... 375
Configure USB Interface ..... 375
Configure the Ethernet Interface ..... 376
Configure RS-232C Interface ..... 379
Configure Socket Server ..... 381
Socket Server Functionality Check ..... 382
Web Server ..... 387
Web Server Overview ..... 387

\section*{Interface Configuration}

\section*{Configure USB Interface}
\begin{tabular}{lll}
\hline USB & PC side connector & Type A, host \\
Configuration & \begin{tabular}{l} 
GDS-3000A side \\
connector
\end{tabular} & Type B, device
\end{tabular}

Panel Operation 1. Press the Utility key.
2. Press \(I / O\) from the bottom menu.

1/0
3. Rotate the VARIABLE knob to select the USB Device Port function.

4. Select Computer from the side menu.

USB Device Port \(\square\)

Computer

> 5. This oscilloscope is a USB-TMC device. Please install the National Instruments NI-VISA library which can download from the National Instruments web site. Newer versions are likely, and should be compatible with this instrumentation. Download the latest version available for the operating system being used by the controlling computer.

\section*{Configure the Ethernet Interface}
\begin{tabular}{ll}
\hline \begin{tabular}{ll} 
Ethernet \\
Configuration
\end{tabular} & \begin{tabular}{l} 
MAC Address \\
Instrument Name \\
User Password \\
Instrument IP \\
Address
\end{tabular}
\end{tabular}\(\quad\)\begin{tabular}{l} 
Domain Name \\
DNS IP Address \\
Gateway IP Address \\
Subnet Mask
\end{tabular}
4. Rotate the VARIABLE knob to select the Network function.
\begin{tabular}{|c|}
\hline USB Device Port \(\square\) \\
\hline Netuork \\
\hline RS-232C \\
\hline Socket Server \\
\hline Web Server \\
\hline \\
\hline
\end{tabular}
5. Press Ethernet from the side menu
6. Set DHCP/BOOTP to On or Off from the side menu.

IP addresses will automatically be assigned with DHCP/BOOTP set to on. For Static IP Addresses, DHCP/BOOTP should be set to off.

7. Use the Up and Down arrows on the side menu or use the numerical keypad on front panel to navigate to each Ethernet configuration item.

\begin{tabular}{|c|c|}
\hline &  \\
\hline Items & MAC Address, Instrument Name, User Password, Instrument IP Address, Domain Name, DNS IP Address, Gateway IP Address, Subnet Mask \\
\hline
\end{tabular}
8. Use the VARIABLE knob to highlight a character and use the Select key to choose a character.

Press Backspace to delete a character.

Press Save Now to save the configuration. Complete will be displayed when successful.

VARIABLE


\section*{Configure RS-232C Interface}
\begin{tabular}{lll} 
RS-232C & Connector & DB-9, Male \\
Configuration & Baud rate & \(2400,4800,9600,19200,38400\), \\
& & 57600,115200 \\
& Parity & None, Odd, Even \\
& Data bit & 8 (fixed) \\
& Stop bit & 1,2 \\
\hline
\end{tabular}

Panel Operation
1. Press the Utility key.
2. Press \(I / O\) from the bottom menu.
3. Rotate the VARIABLE knob to select the RS-232C function.

4. Use the side menu to set the Baud Rate.

Baut Rate 2480

Baud Rate 2400, 4800, 9600, 19200, 38400, 57600, 115200
5. Press Stop Bit to toggle the number of stop bits.

Stop Bits 1,2
6. Press Parity to toggle the parity.

Parity Odd, Even, None
7. Press Save Now to save the settings.
8. Connect the RS-232C cable to the rear panel port: DB-9 male connector.


Pin Assignment


2: RxD (Receive data)
3: TxD (Transmit data)
5: GND
4, \(6 \sim 9\) : No connection
PC Connection Use the Null Modem connection as in the below diagram.


\section*{Configure Socket Server}

The GDS-3000A supports socket server functionality for direct twoway communication with a client PC or device over LAN. By default, the Socket Server is off.
Configure Socket Server
1. Configure the IP address for the
Page 376 GDS-3000A.
2. Press the Utility key.

3. Press \(I / O\) from the bottom menu.

\section*{I/0}
4. Rotate the VARIABLE knob to select the Socket Server function.

5. Press Select Port and choose the port number with the VARIABLE

Select Port
(c) з80® knob.

Range 1024~32767
6. Press Set Port to confirm the port number.

Set Port

8. Press Server and turn the socket server On.

\section*{Socket Server Functionality Check}

NI Measurement To test the socket server functionality, National and Automation Instruments Measurement and Automation
Explorer Explorer can be used. This program is available on the NI website, www.ni.com.

\section*{Operation}
1. Configure the IP address for the
Page 376 GDS-3000A.
2. Configure the socket port.

Page 376
3. Start the NI Measurement and

Automation Explorer (MAX) program. Using Windows, press:


Start>All Programs>National
Instruments>Measurement \& Automation

4. From the Configuration panel access;

My System>Devices and Interfaces>Network Devices
5. Right click Network Devices and select Create New Visa TCP/IP Resource...

6. Select Manual Entry of Raw Socket from the popup window.
7. Click Next.

8. Enter the GDS-3000A's IP address and socket port number.
9. Click Validate.
10. A popup will appear to tell you if a VISA socket session was successfully created.
11. Click Next.

12. Choose an alias for the socket connection if you like.
13. Click Finish to finish the configuration.

14. The GDS-3000A will now appear under Network Devices in the Configuration Panel.

Functionality Check
15. Click the Open Visa Test Panel to send a remote command to the GDS-3000A.

16. Click on the Configuration icon.
17. Select the I/O Settings tab.
18. Mark the Enable Termination Character checkbox. Make sure the termination character is a line feed (/n, value: \(x A\) ).
19. Click Apply Changes.

20. Click the Input/Output icon.
21. Make sure the *IDN? query is selected in the Select or Enter Command drop box.
22. Click on Query.
23. The manufacturer, model number, serial


\section*{Web Server}

\section*{Web Server Overview}

Background The GDS-3000A has an inbuilt web server that can be used to:
- view the system information (Welcome Page)
- set/view the network configuration settings (Network Configuration)
- remotely view the current display image on the unit (Get Display Image)
- execute SCPI command
- send the internal profile of oscilloscope to PC side or receive profile
- Web control function: control oscilloscope remotely from browser and display waveform in real-time
\begin{tabular}{lll} 
System & Information: & Manufacturer
\end{tabular}\(\quad\) • IP Address

Network
Configuration
- Hostname
- Domain name
- IP Address
- Subnet mask


Get Display
- Current display image

Image

File Exchange Upload or download profile (*.set) to oscilloscope Web

Here is a simple way to upload/download the file for scope
The single fie size limit is 10 MB
me ne ves:
setup fuer set 'sen
Uplosadme min:

마젱 \(0 \%\)

SCPI command Control oscilloscope remotely from browser via executing SCPI command



Panel Operation 1. Configure the Ethernet interface. Page 376
2. Enter the IP address of the GDS-3000A unit into the address bar of a web browser.

For example http://172.16.20.255
3. Press \(I / O\) from the bottom menu.
4. Rotate the VARIABLE knob to select the Web Server function.

5. Press the Connect button in the
side menu to connect to internet.

Connect
6. The "ONLINE" will be shown for web server when internet connection is established.
7. The GDS-3000A web browser welcome page appears.


\section*{M \\ AINTENANCE}

> Three types of maintenance operations are available: Signal Path Compensation, Vertical Accuracy Calibration and Probe Compensation. Run these operations when using the GDS-3000A in a new environment.
How to use the SPC function ..... 392
Vertical Accuracy Calibration ..... 392
Probe Compensation ..... 394

\section*{How to use the SPC function}
\begin{tabular}{lll} 
Background & \begin{tabular}{l} 
Signal Path Compensation (SPC) is used to \\
compensate the internal signal path due to \\
ambient temperature. SPC is able to optimize the \\
accuracy of the oscilloscope with respect to the \\
ambient temperature.
\end{tabular} \\
Panel Operation & 1. Press the Utility key. \\
& \begin{tabular}{l} 
2. \begin{tabular}{l} 
Press System from the bottom \\
menu.
\end{tabular} \\
\begin{tabular}{ll} 
3. \begin{tabular}{l} 
Press SPC from the side menu. A \\
message showing a brief \\
introduction to SPC appears on \\
the screen.
\end{tabular} & SPC \\
\hline
\end{tabular}
\end{tabular} \begin{tabular}{l} 
System
\end{tabular} \\
\hline
\end{tabular}

Disconnect all probes and cables from all channels before calibrating.

The DSO needs to be warmed up for at least 30 minutes before using the SPC function.
4. Press Start on the side menu to start SPC calibration.
5. The SPC Calibration will proceed one channel at a time, from channel 1 to channel 4.

\section*{Vertical Accuracy Calibration}

Panel Operation 1. Press the Utility key.

3. Press more 1 of 3 from the side menu.

More
1 of 3
4. Press Self Cal on the side menu.

Self Cal
5. Press Vertical on the side menu.
6. A message appears to "Now performing vertical calibration...
CH1
Connect the CAL output to channel, then press the Vertical key".
7. Connect the calibration signal from the rear panel to the Channel 1 input with a BNC cable.

8. Press Vertical again after connecting CAL to the channel 1 input.

The calibration for Channel 1 starts and ends automatically, in less than 5 minutes. A message is displayed when the calibration procedure has ended.

Repeat the above step for Channel 2,3* and 4* when prompted.
*4 channel models
9. When the calibration for all channels has completed, the display goes back to the default state.

Probe Compensation

\author{
Panel Operation
}
1. Connect the probe between the Channel 1 input and the probe compensation output (default set as \(2 \mathrm{Vp}-\mathrm{p}, 1 \mathrm{kHz}\) square wave) on the front panel. Set the probe attenuation to x10.
2. Alternatively, the probe compensation frequency can be changed. See page 186 for details.

3. Press the CH1 key to activate CH1.

4. Set the Coupling to DC from the bottom menu.
5. Set the Probe attenuation to

Page 111 Voltage, 10X.
6. Press the Autoset key. The compensation signal appears on the display.
7. Press the UTILITY key followed by pressing the DISPLAY button in the bottom menu, then set the display type to Vector.

8. Turn the adjustment point on the probe to make the waveform as square as possible.



Normal


Over Compensation


\section*{\(F_{\text {AQ }}\)}
- I connected the signal but it does not appear on the display.
- I want to remove the (Measurement result/ FFT result/ Help contents) from the display.
- The waveform does not update (frozen).
- The probe waveform is distorted.
- Autoset does not catch the signal well.
- The date and time settings are not correct.
- The accuracy does not match the specification.

I connected the signal but it does not appear on the display.
Make sure you have activated the channel by pressing the Channel key (the channel key lights up).

I want to remove the (Measurement result/ FFT result/ Help contents) from the display.

To clear automatic measurement results, press the Measure key, select Remove Measurement and choose Remove All. See page 49.
To clear individual measurements from the screen, press the Measure key, select Display All and choose Off. See page 53.
To clear the FFT result, press the Math key twice. See page 66 for details.

To clear the Help result, press the Help key again. See page 35 for details.

The waveform does not update (frozen).
Press the Run/Stop key to unfreeze the waveform. See page 39 for details.

If this does not help, the trigger mode might be set to Single. Press the Single key to exit Single mode. See page 140 for Single trigger details.

\section*{The probe waveform is distorted.}

You might need to compensate the probe. For details, see page 394.
Autoset does not catch the signal well.
The Autoset function cannot catch signals under 10 mV or 20 Hz . Please use the manual operation. See page 38 for Autoset details.

The date and time settings are not correct.
For date and time setting details, please see page 184. If it does not help, the internal battery controlling the clock might be worn out. Contact your dealer or GW Instek.

The accuracy does not match the specification.
Make sure the device is powered on for at least 30 minutes, within \(+20^{\circ} \mathrm{C} \sim+30^{\circ} \mathrm{C}\). This is necessary to stabilize the unit to match the specification.

For more information, contact your local dealer or GW Instek at www.gwinstek.com / marketing@goodwill.com.tw.

\section*{Appendix}
Updating the Firmware ..... 399
GDS-3000A Series Specifications ..... 401
Model-specific ..... 401
Common ..... 401
Probe Specifications ..... 408
Model-specific Probe Specifications ..... 408
Common Probe Specifications ..... 408
Dimensions ..... 409
Certificate Of Compliance ..... 410

\section*{Updating the Firmware}

Background New firmware can be downloaded from the our website in the oscilloscope products section.

Place a copy of the firmware file (xxx.upg) onto the root directory of a USB flash disk.

\section*{Panel Operation}
1. Put the USB drive that contains

Front panel the firmware into the front panel USB port.

2. Power up the oscilloscope and at

VARIABLE the same time, rotating the VARIABLE knob several times until the oscilloscope boot in the firmware upgrade mode as in the snapshot below.

3. When the firmware file of USB flash disk has been recognized by oscilloscope, a message of "Found UPG: xxx.upg" will appear on the lower corner.
4. Press the "Start Now" (F1) key. The oscilloscope will automatically start upgrading the firmware. Or press the "Cancel" (F3) key to quit the firmware upgrading procedure.

5. When the status indicator shows the complete status (status indicator in yellow completely) and a message of "Update NAND flash success" will appear on the top of status indicator. The firmware upgrading procedure is completed.

6. Restart the oscilloscope manually.

Check the firmware version by pressing the "Utility" \(\rightarrow\) "System" \(\rightarrow\) "System Info". The system information screen that it is being updated.

\section*{GDS-3000A Series Specifications}

The specifications apply when the GDS-3000A series is powered on for at least 30 minutes under \(+20^{\circ} \mathrm{C} \sim+30^{\circ} \mathrm{C}\).

Model-specific
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{4}{*}{GDS-3352A} & Channels & \(2+\) Ext \\
\hline & Bandwidth & DC \(\sim 350 \mathrm{MHz}(-3 \mathrm{~dB}) @ 50 \Omega / 1 \mathrm{M} \Omega\) input impedance \\
\hline & Rise Time & 1 ns (calculated) \\
\hline & Bandwidth Limit & \(20 \mathrm{MHz} / 100 \mathrm{MHz} / 200 \mathrm{MHz*}\) \\
\hline \multirow[t]{5}{*}{GDS-3652A} & Channels & \(2+\) Ext \\
\hline & \multirow[t]{2}{*}{Bandwidth} & DC \(\sim 650 \mathrm{MHz}(-3 \mathrm{~dB}) @ 50 \Omega\) input impedance \\
\hline & & DC ~ 500MHz (-3dB) @1M \(\Omega\) input impedance \\
\hline & Rise Time & 535ps (calculated) \\
\hline & Bandwidth Limit & \(20 \mathrm{MHz} / 100 \mathrm{MHz} / 200 \mathrm{MHz} / 300 \mathrm{MHz}\) * \\
\hline \multirow[t]{4}{*}{GDS-3354A} & Channels & \(4+\) Ext \\
\hline & Bandwidth & DC \(\sim 350 \mathrm{MHz}(-3 \mathrm{~dB}) @ 50 \Omega / 1 \mathrm{M} \Omega\) input impedance \\
\hline & Rise Time & 1 ns (calculated) \\
\hline & Bandwidth Limit & \(20 \mathrm{MHz} / 100 \mathrm{MHz} / 200 \mathrm{MHz*}\) \\
\hline \multirow[t]{5}{*}{GDS-3654A} & Channels & \(4+\) Ext \\
\hline & \multirow[t]{2}{*}{Bandwidth} & DC \(\sim 650 \mathrm{MHz}(-3 \mathrm{~dB}) @ 50 \Omega\) input impedance \\
\hline & & DC ~ 500MHz (-3dB) @1M \(\Omega\) input impedance \\
\hline & Rise Time & 535ps (calculated) \\
\hline & Bandwidth Limit & \(20 \mathrm{MHz} / 100 \mathrm{MHz} / 200 \mathrm{MHz} / 300 \mathrm{MHz*}\) \\
\hline *: The tolera & dwidth limit is \(\pm 10\) & \\
\hline
\end{tabular}

\section*{Common}
\begin{tabular}{|c|c|c|}
\hline Vertical Sensitivity & Resolution & \begin{tabular}{l}
8 bits, (Max. 12 bits with Hi Res) \\
For \(1 \mathrm{M} \Omega\) input impedance: \\
\(1 \mathrm{mV} * \sim 10 \mathrm{~V} / \mathrm{div}\) \\
For \(50 \Omega\) input impedance: \\
\(1 \mathrm{mV} * \sim 1 \mathrm{~V} / \mathrm{div}\) \\
*: The bandwidth is limited to 20 MHz \\
at \(2 \mathrm{mV} /\) div or below.
\end{tabular} \\
\hline & Input Coupling & AC, DC, GND \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \multirow[t]{6}{*}{Signal Acquisition} & Real Time Sample Rate & 5GSa/s half channels; \(2.5 \mathrm{GSa} / \mathrm{s}\) all channels \\
\hline & Record Length & Max. 200Mpts / ch \\
\hline & Acquisition Mode & Normal, Average, High Resolution, Peak Detect, Single \\
\hline & Peak Detection & 2ns (typical) \\
\hline & Average & Selectable from 2 to 512 \\
\hline & Number of Segments & 1 to 490,000 maximum \\
\hline \multirow[t]{3}{*}{X-Y Mode} & X-Axis Input & Channel 1, Channel 3 (for 4CH models) \\
\hline & Y-Axis Input & Channel 2, Channel 4 (for 4CH models) \\
\hline & Phase Shift & \(\pm 3^{\circ}\) at 100 kHz \\
\hline \multirow[t]{4}{*}{Cursors and Measurement} & Cursors & Amplitude, Time, Gating available; Unit: Seconds(s), Hz (1/s), Phase (degree), Ratio (\%) \\
\hline & Automatic Measurement & 38 sets with indicator: Pk-Pk, Max, Min, Amplitude, High, Low, Mean, Cycle Mean, RMS, Cycle RMS, Area, Cycle Area, ROVShoot, FOVShoot, RPREShoot, FPREShoot, Frequency, Period, RiseTime, FallTime, +Width, Width, Duty Cycle, +Pulses, -Pulses, +Edges, -Edges, \%Flicker, Flicker Idx ,FRR, FRF, FFR, FFF, LRR, LRF, LFR, LFF, Phase. \\
\hline & Cursors measurement & Voltage difference between cursors \((\Delta \mathrm{V})\) Time difference between cursors \((\Delta \mathrm{T})\) \\
\hline & Auto counter & 6 digits, range from 2 Hz minimum to the rated bandwidth \\
\hline \multirow[t]{4}{*}{Control Panel Function} & Autoset & Single-button, automatic setup of all channels for vertical, horizontal and trigger systems, with "Undo Autoset", "Fit Screen"/ "AC Priority" mode, and "Fine Scale" functions. \\
\hline & Save Setup & 20 sets \\
\hline & Save Waveform & 20 sets \\
\hline & Save Reference Waveform & 4 sets \\
\hline Power Analysis (Optional) & Power Quality, Harmon Loss, Modulation, SOA Loop Response, PSRR, & ics, Ripple, In-rush current, Switching Transient, Efficiency, B-H curve, Control Turn On/Off \\
\hline \multirow[t]{4}{*}{AWG} & General & \\
\hline & Channels & 2 \\
\hline & Sample Rate & 200MSa/s \\
\hline & Vertical Resolution & 14 bits \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline & Vertical Scale & \(1 \mathrm{~dB} /\) div to \(20 \mathrm{~dB} /\) div in a \(1-2-5\) Sequence \\
\hline & Displayed Average Noise Level & \[
\begin{aligned}
& 1 \mathrm{~V} / \mathrm{div} \leftarrow-40 \mathrm{dBm}, \text { Avg : } 16 \\
& 100 \mathrm{mV} / \operatorname{div} \leftarrow-60 \mathrm{dBm} \text {, Avg : } 16 \\
& 10 \mathrm{mV} / \operatorname{div} \leftarrow-80 \mathrm{dBm} \text {, Avg : } 16
\end{aligned}
\] \\
\hline & Spurious Response & \begin{tabular}{l}
2nd harmonic distortion \(<35 \mathrm{dBc}\) \\
3rd harmonic distortion \(<40 \mathrm{dBc}\)
\end{tabular} \\
\hline & Frequency Domain Trace Types & Normal; Max Hold; Min Hold; Average (2 ~ 512) \\
\hline & Detection Methods & Sample; +Peak; -Peak; Average \\
\hline & FFT Windows & FFT Factor: \\
\hline & & Hanning 1.44 \\
\hline & & Rectangular 0.89 \\
\hline & & Hamming 1.30 \\
\hline & & Blackman 1.68 \\
\hline Logic Analyzer & Sample Rate & 1GSa/s per channel \\
\hline & Bandwidth & 200 MHz \\
\hline & Record Length & Per Channel 10M points (max) \\
\hline & Input Channels & 16 Digital (D15-D0) \\
\hline & Trigger type & Edge, Pattern, Pulse Width, Serial bus (I2C, SPI, UART, CAN, LIN), Parallel Bus \\
\hline & Thresholds Quad & Settable thresholds for: D0-D3, D4-D7, D8-11, D12-15 \\
\hline & Threshold selections & TTL, CMOS (5V, \(3.3 \mathrm{~V}, 2.5 \mathrm{~V})\), ECL, PECL,OV ,User Defined \\
\hline & User-defined Threshold Range & \(\pm 5 \mathrm{~V}\) \\
\hline & Maximum Input Voltage & \(\pm 40 \mathrm{~V}\) \\
\hline & Minimum Voltage Swing & \(\pm 250 \mathrm{mV}\) \\
\hline & Vertical Resolution & 1 bit \\
\hline Frequency & Frequency Range & 20 Hz to 25 MHz \\
\hline Response & Input and Output & Channel \(1 \sim 2\) for 2CH models \\
\hline Analyzer & Sources & Channel \(1 \sim 4\) for 4CH models \\
\hline & Number of Test Points & \(10,15,30,45,90\) points per decade selectable for logarithm scale; 2 ~ 1000 points selectable for linear scale \\
\hline & Dynamic Range & \(>80 \mathrm{~dB}\) (typical) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{4}{*}{} & Test Amplitude & 10 mV pp to 2.5 Vpp into \(50 \Omega, 20 \mathrm{mV}\) pp to 5 Vpp into High-Z, Fixed test amplitude or custom amplitude for each decade. \\
\hline & Test Results & Logarithmic or linear overlaid gain and phase plot, may also overlay with reference plots for cross comparison. Test results saved in csv format for offline analysis. \\
\hline & Manual Measurements & Tracking gain and phase markers \\
\hline & Plot Scaling & Auto-scaled during test \\
\hline \multirow[t]{7}{*}{Display} & TFT LCD Type & 10.2" TFT LCD WVGA color display \\
\hline & Display Resolution & 800 horizontal \(\times 480\) vertical pixels (WVGA) \\
\hline & Interpolation & \(\operatorname{Sin}(x) / x\) \\
\hline & Waveform Display & Dots, vectors, variable persistence ( \(16 \mathrm{~ms} \sim 4 \mathrm{~s}\) ), infinite persistence, gray or color waveforms. \\
\hline & Waveform Update Rate & 200,000 waveforms per second, maximum \\
\hline & Display Graticule & \(8 \times 10\) divisions \\
\hline & Display Mode & YT, XY \\
\hline \multirow[t]{9}{*}{Interface} & USB Port & USB 2.0 High-speed host port X1, USB High-speed 2.0 device port X1 \\
\hline & Ethernet Port (LAN) & RJ-45 connector X1, 10/100Mbps with HP Auto-MDIX \\
\hline & Go-NoGo BNC & 5 V Max/ 10 mA TTL open collector output X1 \\
\hline & Power Supply & \(\pm 12 \mathrm{~V} / 600 \mathrm{~mA}\) for current probe use. \\
\hline & Receptacles & \begin{tabular}{l}
Two sets of power supply receptacles for 2CH models; \\
Four sets of power supply receptacles for 4CH models.
\end{tabular} \\
\hline & RS232C & DB-9 male connector X1 \\
\hline & VGA Video Port & DB-15 female connector X 1 , monitor output for display on VGA monitor \\
\hline & Optional GPIB Module & Fully programmable with IEEE488-2 compliance \\
\hline & Kensington Style Lock & Rear-panel security slot connects to standard Kensington-style lock. \\
\hline \multirow[t]{4}{*}{Miscellaneous} & Multi-language menu & Available \\
\hline & Operation & Temperature: \(0^{\circ} \mathrm{C}\) to \(50^{\circ} \mathrm{C}\). Relative \\
\hline & Environment & \[
\begin{aligned}
\text { Humidity } & \leq 80 \% \text { at } 40^{\circ} \mathrm{C} \text { or below; } \\
& \leq 45 \% \text { at } 41^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C} .
\end{aligned}
\] \\
\hline & On-screen help & Available \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Time clock & \begin{tabular}{l} 
Time and Date, Provide the Date/Time \\
for saved data
\end{tabular} \\
\hline Internal Flash Disk & \begin{tabular}{l}
800 M bytes Single-Level Cell memory
\end{tabular} \\
\hline Installed APP & \begin{tabular}{l} 
Go/NoGo, DVM, DataLog, Digital \\
Filter, Frequency Response Analyzer, \\
Mask, Mount Remote Disk, Demo
\end{tabular} \\
\hline User Define Key & \begin{tabular}{l} 
User can select one of the several \\
different preset functions as shortcut \\
key.
\end{tabular} \\
\hline Power Consumption & 100W \\
\hline Weight & \begin{tabular}{l} 
Approx. 4.6kg \\
Dimensions \\
420 mm (W)X 253mm(H)X \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Probe Specifications}

Model-specific Probe Specifications
\begin{tabular}{lll}
\hline GTP-351R & Applicable to & GDS-3352A / GDS-3354A \\
& Bandwidth & DC \(\sim 350 \mathrm{MHz}\) \\
& Rise time & 1.0 ns \\
& Input Capacitance & \(\sim 12 \mathrm{pF}\) \\
& Compensation & \(10 \sim 30 \mathrm{pF}\) \\
& Range & \\
GTP-501R & Applicable to & GDS-3652A \(/\) GDS-3654A \\
& Bandwidth & DC \(\sim 500 \mathrm{MHz}\) \\
& Rise time & 0.7 ns \\
& Input Capacitance & \(\sim 11.5 \mathrm{pF} @ 100 \mathrm{MHz}\) \\
& Compensation & \(8 \sim 20 \mathrm{pF}\) \\
& Range &
\end{tabular}

Common Probe Specifications
\begin{tabular}{lll}
\hline Position \(\times 10\) & \begin{tabular}{ll} 
Attenuation Ratio \\
Input Resistance & \(10: 1\) (fixed) with readout pin \\
& \\
& \begin{tabular}{l} 
Maximum Input \\
oscilloscope \\
Voltage
\end{tabular} \\
& Temperature with \(1 \mathrm{M} \Omega\) input \\
derating with frequency
\end{tabular} \\
\hline \begin{tabular}{l} 
Operating \\
Condition
\end{tabular} & \(-0^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}\) \\
& Relative Humidity \(\leq 85 \% @ 35^{\circ} \mathrm{C}\) \\
\hline Safety Standard & EN61010-031 CAT II
\end{tabular}

\section*{Dimensions}


\section*{Certificate Of Compliance}

We
GOOD WILL INSTRUMENT CO., LTD.
declare that the CE marking mentioned product
satisfies all the technical relations application to the product within the scope of council:
Directive: EMC; LVD; WEEE; RoHS
The product is in conformity with the following standards or other normative documents:


GOODWILL INSTRUMENT CO., LTD.
No. 7-1, Jhongsing Road, Tucheng District, New Taipei City 236, Taiwan
Tel: +886-2-2268-0389
Fax: +886-2-2268-0639
Web: http://www.gwinstek.com Email: marketing@goodwill.com.tw
GOODWILL INSTRUMENT (SUZHOU) CO., LTD.
No. 521, Zhujiang Road, Snd, Suzhou Jiangsu 215011, China
Tel: +86-512-6661-7177
Fax: + 86-512-6661-7277
Web: http://www.instek.com.cn Email: marketing@instek.com.cn

\section*{GOODWILL INSTRUMENT EURO B.V.}

De Run 5427A, 5504DG Veldhoven, The Netherlands
Tel: \(+31-(0) 40-2557790\)
Fax: +31-(0)40-2541194
Email: sales@gw-instek.eu

\section*{NDEX}
AC coupling ..... 105
AC Priority mode ..... 39
Acquisition ..... 80
average ..... 80
indicator. ..... 25
peak detect ..... 80
record length ..... 84
sample. ..... 80
XY mode ..... 81
Advanced math
expression ..... 72
operation ..... 73
source ..... 72
Amplitude measurements ..... 44
APP
Data Log ..... 320
digital filter ..... 322
DVM ..... 318
Go-NoGo ..... 313
mask ..... 324
overview ..... 310
run ..... 311
Area measurements ..... 44
Auto trigger ..... 143
Auto-dim ..... 191
Automatic measurement
Add measurement ..... 47
display all ..... 53
gated mode ..... 53
High-Low .....  54
overview ..... 43
Reference levels ..... 58
remove measurement.49, 50, 51, 52
Statistics ..... 56
Autoset ..... 38
AC Priority mode ..... 39
effect on channel ..... 39
exception ..... 39
Fit Screen mode ..... 39
AWG
AM. ..... 202
channel activation ..... 197
connection ..... 196
Coupling and tracking ..... 222
Create new ARB waveform ..... 210
edit existing waveform ..... 212
FM. ..... 205
FSK. ..... 207
function edit. ..... 214
impedance ..... 198
load ARB waveform ..... 219
normal edit. ..... 213
overview ..... 195
phase ..... 198
Save ARB waveform ..... 220
select waveform ..... 199
specification ..... 403
sweep ..... 208
turn on output ..... 198
waveform settings. ..... 200
Bandwidth filter ..... 106
Blackman window ..... 69
Bus
CAN. ..... 127
cursors ..... 136
encoding. ..... 129
event tables ..... 131, 134
\(\mathrm{I}^{2} \mathrm{C}\) ..... 118
labels ..... 134
LIN. ..... 128
serial bus overview ..... 114
threshold ..... 130
trigger settings
CAN ..... 165
\(\mathrm{I}^{2} \mathrm{C}\) ..... 161
LIN. ..... 168
Parallel. ..... 170
SPI ..... 164
UART. ..... 159
UART. ..... 116
Channel ..... 37
status indicator. ..... 25
Connection ..... 336
Control panel function specification ..... 403
Conventions ..... 30
Coupling mode ..... 104
Cursor
horizontal ..... 59
specification ..... 403
vertical ..... 62
Data logging ..... 320
Date setting ..... 185
indicator ..... 25
DC coupling ..... 104
Declaration of conformity ..... 410
Default setup ..... 357
contents ..... 357
effect on channel. ..... 38
Delay measurements ..... 46
Deskew ..... 111, 228
Detection mode ..... 277
Digital filter ..... 322
Dimensions
diagram ..... 409
Display
AWG ..... 196
bus ..... 113
search. ..... 176
segmented memory ..... 86
specification ..... 406
Spectrum Analyzer ..... 293
Dots ..... 188
DVM ..... 318
Edge Trigger. ..... 148
EN61010
measurement category ..... 5
pollution degree ..... 6
Erase memory ..... 184, 185
Ethernet
interface ..... 376
Expand by ground/center ..... 109
External trigger ..... 141
input terminal ..... 20
specification ..... 402
Mask ..... 324
auto mask ..... 326
user-defined mask ..... 329
Math
Advanced math overview ..... 72
basic. ..... 66
FFT operation ..... 69
FFT overview ..... 68
Mean measurements ..... 44
Memory bar indicator ..... 25
Menu on/off ..... 193
Miscellaneous specification ..... 406
Model differences ..... 10
Normal trigger ..... 143
NTSC ..... 145
Overshoot measurements ..... 45
Overview ..... 335
PAL ..... 145
Parallel bus
configuration ..... 122
encoding ..... 124
event table ..... 124
labels ..... 125
threshold ..... 123
Peak measurements ..... 43
Peak search ....... 277, 278, 280, 281
Peak to peak measurement ..... 43
Play waveform ..... 101
Power Analysis ..... 10, 228
harmonics overview ..... 239
Inrush \(234,251,253,257,261,264,267,271,283,2827^{2}\) dcopy key ..... 372
power quality overview ..... 230
image ..... 351
ripple ..... 249
Power quality ..... 230
Probe
attenuation level ..... 111
attenuation type ..... 110
deskew ..... 111, 228
Probe compensation ..... 394
Probe compensation frequency186155
Pulse measurements ..... 45
Pulse width trigger ..... 151
QR code reader function ..... 186
Rear panel diagram ..... 195
Recall ..... 357
default setup ..... 357
reference. ..... 362
setup ..... 360
waveform ..... 359
Rectangular window ..... 69
Reduce any menu ..... 33
Reduce lower menu ..... 33
Reduce side menu ..... 32
Remote control ..... 374
interface configuration ..... 375
webserver. ..... 387
Ripple ..... 249
Rise and fall trigger. ..... 156
RMS measurements ..... 44
Roll mode ..... 98
RS-232C
interface ..... 379
Run/Stop ..... 39, 193
horizontal position ..... 96
Horizontal scale ..... 97
Safety Instructions
Caution symbol ..... 4
Cleaning the instrument. ..... 6
Disposal instructions ..... 7
Ground symbol ..... 4
Operation Environment ..... 6
Power on/off ..... 6
UK power cord ..... 8
Warning symbol ..... 4
Save ..... 350
setup ..... 355
waveform ..... 353
Screen dimmer ..... 191
Search
configuration ..... 175
copying search events ..... 177
copying trigger events ..... 177
FFT Peak. ..... 179
navigation ..... 177
save marks ..... 178
set/clear events ..... 179
SECAM ..... 145
Segmented memory
configuration ..... 87
CAN ..... 165
infomation ..... 94
measurement ..... 91
navigation ..... 89
overview ..... 85
play back ..... 90
run ..... 88
Serial Bus
SPI ..... 119
Serial number. ..... 183
Service operation
about disassembly ..... 5
contact ..... 397
Setup
default contents ..... 358
file format ..... 344
Signal path compensation ..... 392
Single trigger mode ..... 143
Run/Stop ..... 40
Socket server
function check ..... 382
Socket server
interface ..... 381
Source ..... 273, 275, 337
SPC ..... 392
Specifications ..... 401
Spectrum Analyzer
bandwidth ..... 302
center frequency ..... 299
connections ..... 294
cursors ..... 308
detection mode ..... 297
Overview ..... 292
peak search. ..... 307
source. ..... 294
span ..... 300
start and stop frequency ..... 300
trace options ..... 295
vertical scale. ..... 303,304
window type ..... 303
Spreadsheet file format ..... 342
System information ..... 183
Tilt stand ..... 26
Time setting ..... 185
indicator ..... 25
Trigger ..... 138
\(\mathrm{I}^{2} \mathrm{C}\) ..... 161
LIN. ..... 168
Parallel ..... 170
SPI ..... 164
UART ..... 159
edge ..... 148
holdoff ..... 147
indicator ..... 25
logic ..... 171
mode ..... 148
parameters ..... 140
pulse runt ..... 155
pulse width ..... 151
Rise and fall ..... 156
Single ..... 40
specification. ..... 402
status indicator ..... 25
Timeout ..... 157
overview ..... 147
video ..... 153
Updating the firmware ..... 399
USB
remote control interface ..... 375
Vectors ..... 188
Vertical ..... 103
accuracy calibration ..... 392
basic operation ..... 42
position ..... 103
scale ..... 104
specification ..... 401
Vertical scale. ..... 338
Video trigger ..... 153
Waveform
CSV file contents ..... 343
file contents ..... 342
how to recall ..... 359
how to save ..... 353
invert waveform ..... 105, 108
play/pause key ..... 101
roll mode. ..... 98
zoom mode ..... 99
Waveform color ..... 24
Waveform file format ..... 341
XY specification ..... 403
Zoom waveform ..... 99
Bus```


[^0]:    Panel Operation 1. Set the Bus to UART in the bus Page 116 menu.
    2. Press the Trigger Menu key.

    Menu
    Menu
    3. Press Type from the bottom menu.

    Edge,

[^1]:    Logic Trigger
    Timing
    If a channel was selected as a clock signal, then the clock edge determines when the logic comparison is made. If a clock was not defined then the When menu determines the triggering timing conditions. This is described below in step 9 and 10.

