Setup Guide

For GW Instek e-Load

USER MANUAL

This manual contains proprietary information, which is protected by copyright. All rights are reserved. No part of this manual may be photocopied, reproduced or translated to another language without prior written consent of Good Will company. The information in this manual was correct at the time of printing. However, Good Will continues to improve products and reserves the rights to change specification, equipment, and maintenance procedures at any time without notice. Good Will Instrument Co., Ltd.

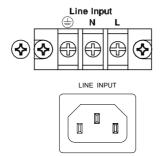
No. 7-1, Jhongsing Rd., Tucheng Dist., New Taipei City 236, Taiwan

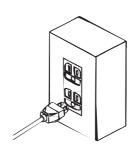
Table of Contents

Setup guide for e-Load	4
Installation and Preparation	
Checking Whether the Power Is On or Off	
Connecting to the DUT	7
Connecting to the load input terminals on the rear	
panel	8
<mark>W</mark> ire/Cable Guide	
Sequence Power ON / Off the Load and DUT	

Setup guide for e-Load

Risk of electric shock

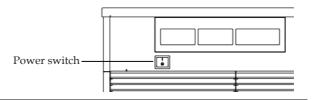

- The AC/DC load conforms to IEC Safety Class I (equipment that has a Protective Conductor terminal). Be sure to earth ground the product to prevent electric shock.
- The AC/DC load is grounded through the power cord ground wire.
- Connect the protective conductor (PE) terminal to earth ground.



nstallation and Preparation

Step

- 1. Turn the power switch off.
- 2. Check that the AC power line meets the nominal input rating of the AC/DC load.
- 3. Connect the power cord to the AC input.
- 4. Check that the power cord is connected correctly.
- 5. Connect the power cord plug to a properly grounded outlet.



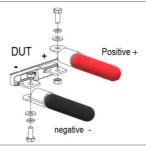
Connect to a properly grounded outlet.

Checking Whether the Power Is On or Off

This is a schematic diagram, referring to all load products

Step

- 1. Check that the power cord is connected correctly.
- 2. Check that nothing is connected to the AC/DC input (load input) terminals on the rear panels.
- 3. Turn the power switch on.
- If you notice strange sounds, unusual odors, fire, smoke around or from inside the AC/DC load, turn the power switch off, or remove the power cord plug from the outlet.
- 5. Press the power switch to turn the power off.



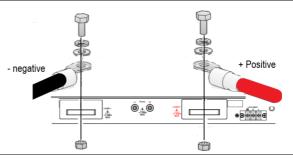
Connecting to the DUT

Risk of danger

- Do not connect the DUT to the load input terminals while the product's load is turned on.
- Do not invert the polarity when connecting. If the polarity is reversed, overcurrent will be generated when the DUT activates the output and therefore, resulting in damage to the DUT or eLOAD.
- To avoid overheating, observe the following precaution.
- Use the supplied screws to connect the cables with wire terminals.

This is a schematic diagram, referring to all load products.

Connecting to the load input terminals on the rear panel


Risk of electric shock

Be sure to attach the cover for the load input terminals on the rear panel.

Step

- 1. Turn the load off.
- 2. Turn off the output of the DUT.
- 3. Connect the DUT to the load input terminals on the rear panel.
- 4. Connect the load cables to the load input terminals on the rear panel using the included load input terminal screw set.
- 5. Do not invert the polarity when connecting.
- Connect the positive (+) input terminal on the load generator to the high Potential output of the DUT & Load unit, and connect the negative (-) polarity input terminal on the load generator to the low Potential output of the DUT & Load unit. This completes the connections.

This is a schematic diagram, referring to all load products.

Wire/Cable Guide

Load wiring has inductance (L). Please check the "Load Line Inductance" section of the user manual for the correct application.

The following table provides a guide to the current carrying capability (ampacity) of Both Metric and AWG sizes. Metric sizes are expressed as a cross sectional areas (CSA). If in any doubt of a cables ampacity it is recommended that you ask your Cable supplier.

			Notes:
Wire Size AWG	Ampacity (A)	CSA (mm²)	Ratings for AWG-sized wires derived from MIL-W-5088B.
			Ratings for metric-sized wires derived from IEC Publication
22	5.0		Ampacity of aluminum wire is approximately 84% of that listed for copper wire.
20	8.33		
	10	0.75	
18	15.4		
	13.5	1	When two or more wires are bundled together, ampacity for each wire must be reduced to the following
16			
	16	1.5	
14	31.2		percentages :
	25	2.5	
12	40		2 conductors 94%
	32	4	3 conductors 89% 4 conductors 83% 5 conductors 76%
10	55		
	40	6	
8	75		
	63	10	Maximum temperatures:
6	100		Ambient = 50° C Conductor = 105° C
4	135		

Sequence Power ON / Off the Load and DUT

Power ON Sequence

Step

- 1. Turn the power switch of the load on.
- 2. Turn the power switch of the DUT on.

Power OFF Sequence

Step

- 1. Turn the power switch of the load off.
- 2. Turn the power switch of the DUT off.